A Study on Energy Consumption Prediction from Building Energy Management System Data with Missing Values Using SSIM and VLSW Algorithms

2021 ◽  
Vol 70 (10) ◽  
pp. 1540-1547
Author(s):  
QUAN JUNLONG ◽  
Jee-Woong Shin ◽  
Jeong-Lim Ko ◽  
Seung-Kwon Shin
2013 ◽  
Vol 368-370 ◽  
pp. 1222-1227 ◽  
Author(s):  
Yuan Su ◽  
Jun Wei Yan

Nowadays, universities are taking responsibility for their environmental impact and are working to ensure environmental sustainability. In this research, we aim to analyze energy system of a model university campus in southern China and grasp the energy consumption of the whole campus from the viewpoint of reducing GHG emission. We investigated and analyzed the present situation of energy system by using measured data and inquiry survey. In order to grasp the data exactly, we introduced building energy management system (BEMS) to some typical buildings with electricity consumption controlling. Then examination of energy consumption intensity according the different typical buildings has been analyzed on the basis of the research at campus. The campus's energy consumption prediction was carried out during the 24-h field measurements period. Furthermore, energy consumption intensity of the whole campus were predicted.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6354
Author(s):  
Yassine Chemingui ◽  
Adel Gastli ◽  
Omar Ellabban

Energy efficiency is a key to reduced carbon footprint, savings on energy bills, and sustainability for future generations. For instance, in hot climate countries such as Qatar, buildings are high energy consumers due to air conditioning that resulted from high temperatures and humidity. Optimizing the building energy management system will reduce unnecessary energy consumptions, improve indoor environmental conditions, maximize building occupant’s comfort, and limit building greenhouse gas emissions. However, lowering energy consumption cannot be done despite the occupants’ comfort. Solutions must take into account these tradeoffs. Conventional Building Energy Management methods suffer from a high dimensional and complex control environment. In recent years, the Deep Reinforcement Learning algorithm, applying neural networks for function approximation, shows promising results in handling such complex problems. In this work, a Deep Reinforcement Learning agent is proposed for controlling and optimizing a school building’s energy consumption. It is designed to search for optimal policies to minimize energy consumption, maintain thermal comfort, and reduce indoor contaminant levels in a challenging 21-zone environment. First, the agent is trained with the baseline in a supervised learning framework. After cloning the baseline strategy, the agent learns with proximal policy optimization in an actor-critic framework. The performance is evaluated on a school model simulated environment considering thermal comfort, CO2 levels, and energy consumption. The proposed methodology can achieve a 21% reduction in energy consumption, a 44% better thermal comfort, and healthier CO2 concentrations over a one-year simulation, with reduced training time thanks to the integration of the behavior cloning learning technique.


Sign in / Sign up

Export Citation Format

Share Document