A reciprocal relation for Hermite polynomials
Keyword(s):
For $x\in \mathbb{R}$, the ordinary Hermite polynomial $H_k(x)$ can be written\begin{eqnarray*}\displaystyleH_k(x)= \mathbb{E} \left[ (x + {\rm i} N)^k \right] =\sum_{j=0}^k {k\choose j} x^{k-j} {\rm i}^j \mathbb{E} \left[ N^j \right],\end{eqnarray*}where ${\rm i} = \sqrt{-1}$ and $N$ is a unit normal random variable. We prove the reciprocal relation\begin{eqnarray*}\displaystylex^k=\sum_{j=0}^k {k\choose j} H_{k-j}(x)\ \mathbb{E} \left[ N^j \right].\end{eqnarray*}A similar result is given for the multivariate Hermite polynomial.
1998 ◽
Vol 37
(03)
◽
pp. 235-238
◽
1958 ◽
Vol 1958
(1-2)
◽
pp. 1-17
◽
2018 ◽
Vol 55
(4)
◽
pp. 1287-1308
◽
Keyword(s):
2012 ◽
Vol 49
(1)
◽
pp. 167-183
◽
Keyword(s):
Keyword(s):