Validation of Molecular Markers Linked with Yellow Mosaic Disease Resistance in Blackgram Vigna mungo (L.) Hepper

Author(s):  
Palaniappan Jayamani
2017 ◽  
Vol 23 (4) ◽  
pp. 767-777 ◽  
Author(s):  
Rahul Singh Jasrotia ◽  
Mir Asif Iquebal ◽  
Pramod Kumar Yadav ◽  
Neeraj Kumar ◽  
Sarika Jaiswal ◽  
...  

2004 ◽  
Vol 54 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Yoshihiro Okada ◽  
Ryouichi Kanatani ◽  
Syouichi Arai ◽  
Kazutoshi Ito

Author(s):  
Kalyankumar Kamesh Krishnamoorthy ◽  
Varagur Ganesan Malathi ◽  
Perumal Renukadevi ◽  
Subbarayalu Mohan Kumar ◽  
Muthurajan Raveendran ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Gurpreet Kaur ◽  
Mamta Pathak ◽  
Deepak Singla ◽  
Abhishek Sharma ◽  
Parveen Chhuneja ◽  
...  

Yellow mosaic disease (YMD) in bitter gourd (Momordica charantia) is a devastating disease that seriously affects its yield. Although there is currently no effective method to control the disease, breeding of resistant varieties is the most effective and economic option. Moreover, quantitative trait locus (QTL) associated with resistance to YMD has not yet been reported. With the objective of mapping YMD resistance in bitter gourd, the susceptible parent “Punjab-14” and the resistant parent “PAUBG-6” were crossed to obtain F4 mapping population comprising 101 individuals. In the present study, the genotyping by sequencing (GBS) approach was used to develop the genetic linkage map. The map contained 3,144 single nucleotide polymorphism (SNP) markers, consisted of 15 linkage groups, and it spanned 2415.2 cM with an average marker distance of 0.7 cM. By adopting the artificial and field inoculation techniques, F4:5 individuals were phenotyped for disease resistance in Nethouse (2019), Rainy (2019), and Spring season (2020). The QTL analysis using the genetic map and phenotyping data identified three QTLs qYMD.pau_3.1, qYMD.pau_4.1, and qYMD.pau_5.1 on chromosome 3, 4, and 5 respectively. Among these, qYMD.pau_3.1, qYMD.pau_4.1 QTLs were identified during the rainy season, explaining the 13.5 and 21.6% phenotypic variance respectively, whereas, during the spring season, qYMD.pau_4.1 and qYMD.pau_5.1 QTLs were observed with 17.5 and 22.1% phenotypic variance respectively. Only one QTL qYMD.pau_5.1 was identified for disease resistance under nethouse conditions with 15.6% phenotypic variance. To our knowledge, this is the first report on the identification of QTLs associated with YMD resistance in bitter gourd using SNP markers. The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for disease resistance.


Author(s):  
Manpreet Kaur ◽  
Budhavaram Varalakshmi ◽  
Manish Kumar ◽  
Eguru Sreenivasa Rao ◽  
Mottaiyan Pitchaimuthu ◽  
...  

Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


Sign in / Sign up

Export Citation Format

Share Document