Development of Heterotic Groups (G.hirsutum vs G.barbadense) Based on Combining Ability and Interspecific Hybrids Performance for Yield and Fiber Quality Traits

Author(s):  
Yanal Alkuddsi ◽  
S.S. Patil ◽  
S. M. Manjula ◽  
B. C. Patil ◽  
H. L. Nadaf ◽  
...  
2010 ◽  
Vol 62 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Yuksel Bolek ◽  
Hatice Cokkizgin ◽  
Adem Bardak

Combining ability and heterosis for fiber quality traits in cotton Combining ability analysis and heterosis for cotton fiber quality traits were studied in a set of diallel crosses involving eight cotton (Gossypium sp.) genotypes. Randomized complete block design was used to test 56 F1 and 8 parents for fiber quality traits; length (Len), strength (Str), micronaire (Mic), uniformity (Unf), elongation (Elg), spinning consistency index (Sci) and short fiber index (Sfi). Analysis revealed significant general combining ability (GCA) and specific combining ability (SCA) effects for all the traits and additive gene effects were important in the inheritance of the traits. Giza-45 had the highest GCA effects for Len, Sci, Unf and Elg while Is-4 had the highest Str value. Mic and Sfi values were lowest for Askabat-100 and Giza-45, respectively. The cross Cukurova-1518 × 108-F and Nazilli-84S × Askabat-100 had the lowest SCA effects for Mic and Sfi, respectively. The highest values for Len (Askabat-100 × 108-F), for Str (Acala Prema × 108-F), for Sci (Is-4 × Giza-45), for Unf (Stoneville-453 × Askabat-100) and for Elg (108-F × Is-4) were also obtained. Hybridizations among Askabat-100 × Nazilli-84S, Is-4 × Giza-45, Askabat-100 × Stoneville-453, Askabat-100 × Giza-45, Is-4 × 108F, Giza-45 × 108F, Giza-45 × Acala Prema, Nazilli-84S × Giza-45, Is-4 × Nazilli-84S and Acala Prema × Askabat-100 crosses yielded the best heterosis and heterobeltiosis values. Aforementioned parents and crosses could be utilized for further selection of high fiber quality and applying 3-way crosses or modified backcross or recurrent selection to genotypes having good combining ability would improve fiber quality.


2020 ◽  
Author(s):  
Xiaoli Geng ◽  
Yujie Qu ◽  
Yinhua Jia ◽  
Shoupu He ◽  
Zhaoe Pan ◽  
...  

Abstract Background: Heterosis has been extensively utilized in different crops and made a significant contribution to global food security. Genetic distance (GD) is one of the valuable criteria for selecting parents in hybrid breeding. The objectives of this study were to estimate the GD between parents using both simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers and to investigate the efficiency of the prediction of hybrid performance based on GD. The experiment comprised of four male parents, 282 female parents and 1128 F1, derived from NCII mating scheme. The hybrids, their parents with two check cultivars were evaluated for two years. Performance of F1, mid-parent heterosis (MPH), and best parent heterosis (BPH) were evaluated for ten agronomic and fiber quality traits. Results: Heterosis was observed in all hybrids and, the traits like plant height, boll number, boll weight and lint percentage exhibited higher heterosis than the fiber quality traits. Correlations were significant between parental and F1 performances. The F­1 performances between three hybrid sets (Elite×Elite, Exotic×Elite, and Historic×Elite) showed significant differences in eight traits. The correlation of the GD assessed by both SSR and SNP markers was significantly positive. The cluster analysis based on GD results estimated using SNP showed that all the female parents divided into five groups and the F1 performance between these five groups showed significant differences in seven traits. The correlation between GD and F1 performance, MPH and BPH were significant for lint percentage and micronaire. Conclusions: Our results suggested that GD between parents could be helpful in heterosis prediction for certain traits. This study reveals that molecular marker analysis can serve as a basis for assigning germplasm into heterotic groups and to provide guidelines for parental selection in hybrid cotton breeding.


2013 ◽  
Vol 17 (4) ◽  
pp. 129-141
Author(s):  
M. M. M. Amein ◽  
M. I. Masri ◽  
A. M. R. Abd El-Bary ◽  
S.S, Attia

Sign in / Sign up

Export Citation Format

Share Document