gene effects
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 145)

H-INDEX

45
(FIVE YEARS 3)

2024 ◽  
Vol 84 ◽  
Author(s):  
B. C. Kundu ◽  
G. M. Mohsin ◽  
M. S. Rahman ◽  
F. Ahamed ◽  
A. K. Mahato ◽  
...  

Abstract Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.


2022 ◽  
pp. 1-10
Author(s):  
Rahul Chandel ◽  
A. T. Sadashiva ◽  
Kundapura V. Ravishankar ◽  
Anjan Das ◽  
Bichhinna Maitri Rout ◽  
...  

Abstract Tomato is a pivotal vegetable crop worldwide concerning human nutrition, economy and in service to biotechnology. Tomato leaf curl virus (ToLCV) is a begomovirus transmitted through the whitefly (Bemisia tabaci) and is responsible for severe losses in tomato production. In this context, the current investigation was carried out to determine heterotic combiners with high yield, resistance to ToLCV and mode of gene action for economically important traits. For this, 11 prescreened inbred lines were crossed in a half diallel fashion to generate 55 F1 hybrids. The 55 crosses with 11 parents and commercial checks were evaluated for different horticultural traits and resistance to ToLCV. The molecular validation with SCAR markers TG0302 and SCAR1 confirmed the presence of ToLCV-resistant genes in parents and their crosses. The hybrid IIHR-2902 × IIHR-2852 showed the presence of both Ty-2 and Ty-3 alleles in the homozygous state. The estimation of σSCA2 and σGCA2 was significant. It also indicated that the genetic control of target traits was under additive and non-additive gene effects. The values of σA/D2 along with σGCA2/σSCA2 found to be less than unity indicates the preponderance of non-additive gene action in the expression of the studied traits except for percent disease incidence. The parental line IIHR-2919 was the best combiner for fruit and yield traits. The cross combinations IIHR-2913 × IIHR-2898 exhibited significantly higher economic heterosis for yield along with the presence of Ty-2 and Ty-3 genes. The study paves the way for breeding high yielding and ToLCV-resistant hybrids in tomato.


2022 ◽  
Author(s):  
Shikha Yashveer ◽  
Neeru Redhu ◽  
Vikram Singh ◽  
Sonali Sangwan ◽  
Hembade Laxman ◽  
...  

Abiotic stresses like heat, drought, and salinity are among the major threats to sustainable crop production. These stresses induce numerous adverse effects in plants by impairing biochemical, physiological and molecular processes, eventually affecting plant growth, development and productivity. The rising temperature is one of the major causes of heat stress in agriculture. The variation in temperature during crop development has led to devastating agricultural losses in terms of yield. To adapt and mitigate these effects, germplasm scientists and agronomists aim to develop heat-tolerant varieties or cultivars. These efforts generally include the identification of alleles responsible for heat tolerance and their introgression into breeding populations through conventional or biotechnological methods. However, heat tolerance is a very complex physio-biochemical response of plants governed by a number of genes positioned at different loci. The accumulation of various additive gene effects into a single genotype is an extremely tedious and time-consuming process in both plant breeding and biotechnology. Recent advancements in agricultural nanotechnology have raised expectations for sustainable productivity without altering the genetic make-up of plants. In this milieu, the application of biologically active nanoparticles (NPs) could be a novel approach to enhance heat tolerance in crops. Recently, the NPs from silver, silicon, titanium and selenium have been proven valuable for plants to combat heat stress by altering their physiological and biochemical responses. Due to nano-scale size and the high surface area along with their slow and steady release, the NPs exert positive effects in plants through their growth-promoting and antioxidant capabilities. In this review, various technologies used for NPs characterization and their applications in agriculture have been discussed. The review further elaborates the uptake mechanism of NPs and their translocation in different plant parts along with the factors affecting them. This article also describes the role of metal or metal oxide NPs, as well as nano, encapsulated plant growth regulators and signal molecules in heat stress tolerance. The review will provide an insight to the scientists working in the area of agricultural sciences to explore new NPs to encounter different types of biotic and abiotic stresses.


2022 ◽  
Vol 12 ◽  
Author(s):  
Saifullah Abro ◽  
Muhammad Rizwan ◽  
Zaheer Ahmed Deho ◽  
Shafiq Ahmed Abro ◽  
Mahboob Ali Sial

Heat stress in cotton reduces its productivity. The development of heat-tolerant cotton varieties having resilience against changing climate is feasible. The purpose of this study was to probe the genetic variability in upland cotton for heat tolerance, the association of cell membrane thermostability (CMT), stomata, and trichome size with cotton adaptation to high temperature and effective breeding strategy to advance the valued traits. Relative cell injury percentage (RCI%) in studied genotypes ranged from 39 to 86%. Seventeen genotypes were found heat tolerant on the basis of low RCI%, heat susceptibility index (HSI<1), higher number of boll/plant, and seed cotton yield (SCY). Scanning electron microscopy (SEM) of heat-tolerant genotypes revealed the presence of different size of stomata (21.57 to 105.04 μm2) and trichomes (177 to 782.6 μm) on leaves of selected genotypes. The regression analysis showed a strong and negative association of RCI% and stomata size with SCY. However, no association was observed between the trichome size, yield, and fiber traits. On the overall location basis, a significant genotype × environment interaction was observed. All selected genotypes produced a higher SCY as compared with check varieties. But the stability analysis showed that the high yielding genotypes NIA-M-30, NIA-80, NIA-83, and CRIS-342 were also wide adaptive with unit regression (bi∼1) and non-significant deviation from the regression line (S2d∼0). The ability for the combination of some heat-tolerant genotypes was estimated by using the line × tester method among nine hybrids along with their 3 testers (i.e., male) and 3 lines (i.e., females). Genotypes, CRIS-342 and NIA-Perkh, were observed as best general combiners for SCY with a negative general combining ability effects for RCI%. Five hybrids showed a positive specific combining ability and heterotic effects for studied traits and also found lowest for HSI. RCI% and SCY/plant displayed higher estimates of heritability and genetic advance, indicating the heritability due to additive gene effects and chances of effective selection. The identified heat-tolerant and wide adaptive germplasm can be further advanced and utilized in cotton breeding programs for developing heat-tolerant cultivars. Selection criteria involving CMT and stomata size concluded to be an effective strategy for the screening of heat-tolerant cotton.


2022 ◽  
Vol 82 ◽  
Author(s):  
A. M. M. Al-Naggar ◽  
K. F. Al-Azab ◽  
A. S. M. Younis ◽  
I. O. Hassan ◽  
M. A. E. Basyouny ◽  
...  

Abstract Wheat breeders frequently use generation mean analysis to obtain information on the type of gene action involved in inheriting a trait to choose the helpful breeding procedure for trait improvement. The present study was carried out to study the inter-allelic and intra-allelic gene action and inheritance of glaucousness, earliness and yield traits in a bread wheat cross between divergent parents in glaucousness and yield traits; namely Mut-2 (P1) and Sakha 93 (P2). The experimental material included six populations, i.e. P1, P2, F1, F2, BC1, and BC2 for this wheat cross. A randomized complete block design with three replications was used, and a six parameters model was applied. Additive effects were generally more critical than dominance for all studied traits, except for plant height (PH) and grain yield/plant (GYPP). The duplicate epistasis was observed in spike length; SL, spikes/plant; SPP and days to heading; DTH. All six types of allelic and non-allelic interaction effects controlled SL, GYPP, DTH and glaucousness. All three types of epistasis, i.e. additive x additive, additive x dominance, and dominance x dominance, are essential in determining the inheritance of four traits (SL, GYPP, DTH and glaucousness). Dominance × dominance effects were higher in magnitude than additive × dominance and additive × additive in most traits. The average degree of dominance was minor than unity in six traits (glaucousness, grains/spike, spike weight, days to maturity, 100-grain weight and SL), indicating partial dominance and selection for these traits might be more effective in early generations. Meanwhile, the remaining traits (PH, SPP, GYPP and DTH) had a degree of dominance more than unity, indicating that overdominance gene effects control such traits and it is preferable to postpone selection to later generations. The highest values of narrow-sense heritability and genetic advance were recorded by glaucousness trait followed by SL and SPP, indicating that selection in segregating generations would be more effective than other traits.


2021 ◽  
Vol 12 (6) ◽  
pp. 737-744
Author(s):  
Amrita Kumari ◽  
◽  
B. K. Senapati ◽  
Anita Roy Aich ◽  
Aditya Pratap Singh ◽  
...  

The present investigation was conducted to understand the genetic action for controlling the inheritance of some quantitative characters. The experimental materials consisted of three rice varieties, i.e., Mahsuri, Bhutmuri, IR36 and F1, F2, and F3 populations of Mahsuri×Bhutmuri (Cross I) and IR36×Bhutmuri (Cross II). To conduct the generation mean analysis, the parents and their F1, F2, and F3 populations were evaluated during June to October month of Kharif 2016 and Kharif 2017. Generation mean analysis was done for eighteen quantitative characters following the five parameter model. The Analysis of Variance revealed significant differences among the five generations for all the characters studied. The results of the scaling tests and joint scaling test revealed that the Simple additive-dominance model was inadequate for days to 50% flowering, days to maturity, number of panicles plant-1, number of primary branches panicle-1, number of secondary branches panicle-1 in Cross I, while it was for plant height, number of tillers plant-1, number of panicles plant-1, number of grains panicle-1, number of filled grains panicle–1 and fertility % in Cross II. Hence, the present studies have revealed that epistasis as a basic mechanism that cannot be ignored. Thus, formulating breeding policies on only main gene effects i.e. additive and dominance could be misleading.


2021 ◽  
Author(s):  
Md Al-Mamun ◽  
RAFII Y. MOHD. ◽  
MISRAN AZIZAH ◽  
BERAHIM ZULKARAMI ◽  
AHMAD ZAITON ◽  
...  

Abstract Nine morphologically distinct kenaf genotypes were hybridized to produce 36 hybrids following a half diallel mating design. The combining ability and gene action of 15 yield and yield components were assessed in hybrids and their parents across two environments. Except for the mid diameter and plant height traits, there were highly significant differences (p ≤ 0.01) between both the analysis of variance of environments and the interaction of genotype and environment. For the inheritance of these traits, additive gene effects were considerable, and the expression of these additive genes was heavily influenced by the environment. Significant differences were found for all studied traits for GCA except top diameter, and SCA except plant height and top diameter, implying the presence of both additive and non-additive gene action for the inheritance of the concerned characters. For all features except top diameter and number of nodes, the magnitude of GCA variation was significantly higher than that of SCA variance, indicating the additive gene's predominance. The parental lines P1, P3 and P4 were determined to be outstanding general combiners for fibre yield and yield-related parameters. Considering combining ability and genetic analysis study together, the crosses P1 × P4, P1 × P9, P2 × P3, P2 × P5, P4 × P6, P4 × P7, P4 × P9, P5 × P8, and P7 × P9 were found promising for their heterotic response to higher fibre yield, stick yield, seed yield and and could be useful by adopting proper strategies for future improvement in kenaf breeding programmes.


2021 ◽  
Author(s):  
Kieran Elmes ◽  
Astra Heywood ◽  
Zhiyi Huang ◽  
Alex Gavryushkin

Large-scale genotype-phenotype screens provide a wealth of data for identifying molecular alterations associated with a phenotype. Epistatic effects play an important role in such association studies. For example, siRNA perturbation screens can be used to identify combinatorial gene-silencing effects. In bacteria, epistasis has practical consequences in determining antimicrobial resistance as the genetic background of a strain plays an important role in determining resistance. Recently developed tools scale to human exome-wide screens for pairwise interactions, but none to date have included the possibility of three-way interactions. Expanding upon recent state-of-the art methods, we make a number of improvements to the performance on large-scale data, making consideration of three-way interactions possible. We demonstrate our proposed method, Pint, on both simulated and real data sets, including antibiotic resistance testing and siRNA perturbation screens. Pint outperforms known methods in simulated data, and identifies a number of biologically plausible gene effects in both the antibiotic and siRNA models. For example, we have identified a combination of known tumor suppressor genes that is predicted (using Pint) to cause a significant increase in cell proliferation.


2021 ◽  
Vol 9 (11) ◽  
pp. 182-201
Author(s):  
F Shahrin ◽  
P Roy ◽  
M S Raihan ◽  
M M Haque ◽  
M G Rasul

Overcoming malnutrition through biofortification breeding in rice is aimed to assist nutritional food security in Bangladesh. So to select parents for nutritional improvement, estimation and exploitation of mineral nutrients reserves of rice grain and their variability assessment in different genotypes is essential. Eighty-five (85) T. aman rice genotypes collected from different coastal regions of Bangladesh were evaluated at the Advanced Plant Breeding laboratory, GPB of BSMRAU to estimate the grain nutrients content and to elucidate their genetic variability among the genotypes. Considerable significant variation (0.1% level of probability) was noted among the genotypes for studied different grain nutrient contents and yield per hill. The mean values of N, P, K, Ca, Mg, Na, Zn, Fe, Cu, Mn and grain yield/ hill were 10788.24 mg/kg, 804.85 mg/kg, 3798.58 mg/kg, 13795.29 mg/kg, 2778.87 mg/kg, 3771.17 mg/kg, 7.25 mg/kg, 5.01 mg/kg, 1.05 mg/kg, 1.90 mg/kg and 433.29 g, respectively. Box and whisker plots analysis were done to represent data graphically for better understanding. Histogram was used to present the frequency distribution of genotypes for N, P, K, Ca, Mg, Na, Zn, Fe, Cu, Mg and Grain yield/hill content in 85 diverged rice genotypes All the traits had equality in genotypic and phenotypic variances with high heritability and high genetic advance which indicated preponderance of additive gene effects for these traits. The genotype R080 (Chinigura) contained the highest content of grain P, Fe and Cu. The R030 (Mota Dhan), R040 (Dudh Kalam) and R019 (Chikon Dhan) were noted for the highest Ca, Mg and Na content, respectively. The maximum N and Zn content were observed in R029 (Dudh Kolom) and R075 (Gopal Bogh), respectively. R083 (Lal Dhan) was marked for the highest grain yield/ hill and K content. Genetic variability parameters, heat map analysis and neighbor joining clustering methods indicated these genotypes including R079 can be considered for biofortification program and used as parents for the improvement of those grain nutrients in rice breeding.


Author(s):  
J.R. Balat ◽  
J.B. Patel ◽  
I.R. Delvadiya ◽  
A.V. Ginoya

Background: The choice of parents to be incorporated in hybridization is a crucial step for breeders for the improvement of complex quantitative characters, such as fruit yield and its components. It requires extensive and detailed genetic assessment of existing germplasm and newly developed promising lines. The magnitude and type of gene action serves as criteria for selection of parents, which after hybridization are likely to produce the best recombinants for desirable traits. Methods: Forty five bottle gourd genotypes comprising 36 hybrids and 9 parents were evaluated in four different environments. Genetic components of variation were estimated for 12 different characters including fruit yield per plant. Result: The additive as well as dominant components were significant for fruit yield per plant and its components, revealing equal importance of both additive as well as non-additive gene effects. However, fruit yield per plant is under the control of dominance variance. Over dominance type of gene action, considerable degree of gene symmetry over all the loci, excess of dominant alleles in parents and high narrow sense heritability was found for most of the traits studied.


Sign in / Sign up

Export Citation Format

Share Document