scholarly journals Load Flow Analysis of Dhaka Grid Using PSAT and ETAP and Performance Comparison to PGCB Data

2019 ◽  
Vol 18 (3) ◽  
pp. 81-87
Author(s):  
Anas Abdullah Alvi ◽  
Mohammad Abdul Mannan

This paper deals with a load flow simulation of existing Dhaka Grid Circle of Bangladesh National Grid by using Power System Analysis Toolbox (PSAT) which is a free and open source software of MATLAB Simulink and Electrical Transient and Analysis Program (ETAP) software designed for simulation, operation, and automation of generation, distribution, and industrial power systems. All the data used to simulate were collected from Power Grid Company of Bangladesh (PGCB) and Load flow analysis was carried out using Newton Raphson method and simulated results were compared with PGCB Base Case Data. The network we are considering to simulate has 71 buses (400, 230 and 132 kV), 135 interconnecting lines, 32 generators, 47 loads and only 4 shunt capacitors as per the Dhaka grid circle system. Regarding the maximum demand of the load centers, total 5,525 MW load is connected in this system and the average grid generation in September, 2018 was 10,919.57 MW, though only 5988 MW of the total generation is enlisted in the Dhaka grid circle.

Author(s):  
Shenghu Li

The induction generators (IGs) are basic to wind energy conversion. They produce the active power and consume the reactive power, with the voltage characteristics fragile compared with that of the synchronous generators and doubly-fed IGs. In the stressed system states, they may intensify var imbalance, yielding undesirable operation of zone 3 impedance relays.In this paper, the operation characteristics of the zone 3 relays in the wind power systems is studied. With the theoretical and load flow analysis, it is proved that the equivalent impedance of the IGs lies in the 2nd quadrature, possibly seen as the backward faults by the mho relays, i.e. the apparent impedance enters into the protection region from the left side. The undesirable operation may be caused by more wind power, larger load, less var compensation, and larger torque angle.


2005 ◽  
Vol 42 (4) ◽  
pp. 369-382 ◽  
Author(s):  
T. Yalcinoz

This paper presents a software package developed in Matlab for teaching power systems analysis and operation. The software package is used to support and enhance power engineering education at both undergraduate and postgraduate levels. The application programs in this package include fault analysis, load flow analysis, transient stability, economic dispatch, unit commitment and load forecasting. All modules of the package are independent of each other. The students or researchers can make copies of the software to study and can modify any module of the package.


2020 ◽  
Vol 12 (1) ◽  
pp. 70-83
Author(s):  
Shabbiruddin ◽  
Sandeep Chakravorty ◽  
Karma Sonam Sherpa ◽  
Amitava Ray

The selection of power sub-station location and distribution line routing in power systems is one of the important strategic decisions for both private and public sectors. In general, contradictory factors such as availability, and cost, affects the appropriate selection which adheres to vague and inexact data. The work presented in this research deals with the development of models and techniques for planning and operation of power distribution system. The work comprises a wider framework from the siting of a sub-station to load flow analysis. Work done also shows the application of quantum- geographic information system (Q-GIS) in finding load point coordinates and existing sub-station locations. The proposed integrated approach provides realistic and reliable results, and facilitates decision makers to handle multiple contradictory decision perspectives. To accredit the proposed model, it is implemented for power distribution planning in Bihar which consists of 9 divisions. A Cubic Spline Function-based load flow analysis method is developed to validate the proposal.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ademola Abdulkareem ◽  
T. E. Somefun ◽  
C. O. A. Awosope ◽  
O. Olabenjo

AbstractThe present situation of power generation in Nigeria obviously represents a challenge to our ability for rethinking the delivery of energy at maximum efficiency. Previous research on the existing Nigerian 330-kV network grid, recommended that the network be transformed from radial to ring because of high losses inherent in it and the voltage insecurity. In this study, the existing 330-kV network was reconfigured based on the identified regions mapped out for upgrade to form a ringed 750-kV super grid. The bus voltages of some of the buses in the existing 330-kV were upgraded to 750-kV and new transmission lines added to create an integrated super grid with a ring structure as compared to the radial nature of the existing 330-kV grid. These proposed buses have been selected for upgrade based on the fact that they are positioned in critical areas within the topology of the grid that transforms the existing radial structure to a ring one. The method is also cheaper than making the entire network a 750-kV system. Load-flow analysis was carried out on the existing 330-kV Nigerian Grid and the proposed Nigerian 750-kV integrated into the existing grid using Newton–Raphson algorithm. The results analysis of the new network revealed a significant reduction of 30.2% power loss. This was validated using the code-based MATLAB and Power World Simulation model-based software. Contingency analysis was also carried out on both grids using the Power World Simulator. The study revealed that the 750-kV super grid was able to mitigate the losses experienced on the existing grid significantly with better voltage profiles in all the buses. It also revealed that the new network (330-kV and 750-kV integrated) performed better to the single line contingency analysis with less violations occurring and no unsolvable cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Chen ◽  
Hai Jin ◽  
Han Jiang ◽  
Dechao Xu ◽  
Ran Zheng ◽  
...  

Static state security analysis (SSSA) is one of the most important computations to check whether a power system is in normal and secure operating state. It is a challenge to satisfy real-time requirements with CPU-based concurrent methods due to the intensive computations. A sensitivity analysis-based method with Graphics processing unit (GPU) is proposed for power systems, which can reduce calculation time by 40% compared to the execution on a 4-core CPU. The proposed method involves load flow analysis and sensitivity analysis. In load flow analysis, a multifrontal method for sparse LU factorization is explored on GPU through dynamic frontal task scheduling between CPU and GPU. The varying matrix operations during sensitivity analysis on GPU are highly optimized in this study. The results of performance evaluations show that the proposed GPU-based SSSA with optimized matrix operations can achieve a significant reduction in computation time.


Author(s):  
Wael Abdullah Alsulami

This paper aims to develop a fast load flow computation technique without sacrificing accuracy for various on-line applications of large power systems. Both planning and operation of any power system requires the conduct of many load flow analyses corresponding to various operating modes with different system loading conditions and network configurations. Load flow analysis is performed for the determination of steady state operating status of power systems in terms of bus voltage magnitudes and angles, real and reactive powers and the transmission line losses. The load flow analysis involves the solution of non-linear algebraic equations and hence the conventional load flow algorithms are iterative in nature. The state-of-the-art approach for load flow analysis is based on Newton-Raphson algorithm (NRLF) or its derivatives such as fast decoupled load flow. As these methods are capable of providing the steady state solution within the specified accuracy, these techniques are effectively utilized as a planning tool by various utilities throughout the world. However, these are seen to be ineffective for on-line computations of practical large power systems because of the significant computational over-head due to the inherent iterative nature of such algorithms. Even though the non-iterative DC load flow approach, derived out of NRLF is computationally faster than the conventional techniques, solution accuracy is significantly less than that of its iterative counterparts. Hence, this paper proposes to develop a fast and accurate approach for the on-line load flow analysis. It is proposed to apply artificial neural network (ANN) technique as these are seen to be non-algorithmic in nature. The multi-layer feed-forward ANN for the load flow solution used in this study has one hidden layer with 100 neurons in addition to the input and output layers.  The real and reactive power demands are given as the inputs to the ANN. The output consists of the bus voltage magnitudes and angles at the load buses. The proposed ANN is trained using the conventional NRLF load flow solution of a practical power grid at various load levels. The investigations revel that the ANN as a potential tool for the on-line load flow solution of practical power systems.  


Sign in / Sign up

Export Citation Format

Share Document