Constraints on the Formation of Granite-Related Indium Deposits

2019 ◽  
Vol 114 (5) ◽  
pp. 993-1003 ◽  
Author(s):  
Austin M. Gion ◽  
Philip M. Piccoli ◽  
Philip A. Candela

Abstract The use of indium in modern technologies has grown in recent decades, creating a growth in indium demand; thus, there is a need to constrain the spatial and temporal distribution of indium-bearing, granite-related deposits. Toward this end, a conceptual model and exploration vectors for the formation of granite-related indium deposits have been developed. The magmatic-hydrothermal system is modeled by consideration of crystal-melt and vapor-melt equilibria. The model calculates the efficiency of removal of indium from a melt into a volatile phase, which may serve as a component of an ore-forming fluid. The results of the model suggest that as the proportion of ferromagnesian minerals increases in the associated granites, the probability of indium ore formation decreases. Further, for a given modal proportion of ferromagnesian minerals, as the modal proportion of amphibole increases, the probability of indium ore formation decreases. Lastly, for a given modal proportion of biotite, as the magnesium content of the biotite increases (as would result from increasing oxidation of the magmatic system), the probability of indium ore formation decreases. Granites with the highest probability of being associated with indium ore formation will typically be part of A- or S-type igneous systems and will likely be highly fractionated (e.g., A-type topaz granites). I-type granites will generally have a lower potential of being associated with indium-bearing deposits. However, some I-type granites may be associated with indium-bearing deposits if the deposits contain granites (sensu stricto) or other related rocks (e.g., alaskites) that lack amphibole or other ferromagnesian phases.

2004 ◽  
Vol 94 (5) ◽  
pp. 441-448 ◽  
Author(s):  
M.J. Kirby ◽  
S.W. Lindsay

AbstractIt is well known that amongst the sibling species of the Anopheles gambiae complex, A. arabiensis Patton predominates over A. gambiae sensu stricto Giles in hotter, drier parts of Africa. Here it was investigated whether A. arabiensis is better adapted to higher temperatures than A. gambiae s.s. at the microclimatic level. Bioassays were used to assess behavioural avoidance activity of adult mosquitoes in the presence of increasing temperature. Female mosquitoes were introduced into a holding tube from which they could escape into a cage through a one-way funnel. From a starting temperature of 28°C they were exposed to a 2°C rise in temperature every 30 min until all mosquitoes had escaped or been knocked down. As temperature increased, A. arabiensis left the holding tube at higher temperatures than A. gambiae s.s. (A. arabiensis mean activation temperature = 35.7°C, 95% CIs = 35.4–36.1°C; A. gambiae s.s. = 33.0°C, 32.5–33.5°C). To determine the relative ability of both species to survive at extremely high temperatures, batches of insects were exposed to 40°C for different periods. It took considerably longer to kill 50% of A. arabiensis at 40°C than it did A. gambiae s.s. (112 min vs. 67 min). These data show that adult A. arabiensis are better adapted to hotter conditions than A. gambiae s.s., a characteristic that is reflected in their spatial and temporal distribution in Africa.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


Sign in / Sign up

Export Citation Format

Share Document