scholarly journals Spatial and temporal distribution of anchovy density in Inner Ambon Bay on dry season (December-February)

2021 ◽  
Vol 797 (1) ◽  
pp. 012004
Author(s):  
J Latumeten ◽  
V D V Latumeten
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Endris Aman ◽  
Wassie Molla ◽  
Zeleke Gebreegizabher ◽  
Wudu Temesgen Jemberu

Abstract Background Foot and mouth disease (FMD) is an economically important trans-boundary viral disease of cloven-hoofed animals. It is caused by FMD virus, which belongs to the genus Aphthovirus and family Picornaviridae. FMD is a well-established endemic disease in Ethiopia since it was first detected in 1957. This retrospective study was carried out to identify the spatial and temporal distribution of FMD outbreaks in Amhara region of Ethiopia using 18 years (January 1999–December 2016) reported outbreak data. Results A total of 636 FMD outbreaks were reported in Amhara region of Ethiopia between 1999 and 2016 with an average and median of 35 and 13 outbreaks per year respectively. In this period, FMD was reported at least once in 58.5% of the districts (n = 79) and in all administrative zones of the region (n = 10). The average district level incidence of FMD outbreaks was 4.68 per 18 years (0.26 per district year). It recurs in a district as epidemic, on average in 5.86 years period. The incidence differed between administrative zones, being the lowest in East Gojjam and highest in North Shewa. The occurrence of FMD outbreaks was found to be seasonal with peak outbreaks in March and a low in August. The long-term trend of FMD outbreaks indicates a slight, but statistically significant (p < 0.001) decrease over the study period. Conclusion FMD occurred in all zones of the region and showed statistically significant decrease in the long-term trend. Numbers of outbreaks were relatively higher during dry season. The spatial and temporal distribution identified in this study should be considered in controlling the disease. As unregulated and frequent animal movements are the likely causes of high outbreak occurrence during the dry season, animal movement regulations should be considered for the long-term control of FMD.


2017 ◽  
Vol 37 (04) ◽  
pp. 225-233 ◽  
Author(s):  
Babacar Labou ◽  
Thierry Brévault ◽  
Serigne Sylla ◽  
Mamadou Diatte ◽  
Dominique Bordat ◽  
...  

Abstract In Senegal, damage caused by insect pests is a major obstacle to seasonal stability and an increase in cabbage production. Little is known about the spatial and temporal distribution of cabbage pests, which makes the design of management recommendations to small-scale farmers challenging. The objectives of this study were to: (i) evaluate the status of insect pests observed in cabbage farmers’ fields; (ii) give information on the spatial and temporal distribution of key pests and (iii) assess the effect of temperature, insecticide applications, and host crop abundance on their incidence. A total of 116 cabbage fields were monitored for insect pests and related damage over four crop cycles, from October 2012 to May 2014, in the main vegetable producing area of Senegal (Niayes). The diamondback moth Plutella xylostella (L.) was by far the most important pest present in all the fields and with high levels of incidence (37.1% infested plants), particularly in the latter part of the dry season in the South of Niayes (50% infested plants). The cabbage webworm Hellula undalis (F.) was mainly observed in the early dry season in the south of Niayes, with an incidence of up to 12.5% infested plants. More surprising was the detection of the tomato fruit worm Helicoverpa armigera (Hübner), with damage of up to 9.4% of cabbage heads. The incidence of sucking pests such as whiteflies Bemisia tabaci (Gennadius), or aphids (including Lipaphis pseudobrassicae (Davis, 1914), Myzus persicae (Sulzer) or Brevicoryne brassicae (L.)) was generally low. The incidence of P. xylostella increased significantly with the number of insecticide applications, indicating that control deployed by growers was ineffective. The incidence of H. undalis did not depend on the number of insecticide applications, but significantly increased with host crop abundance and decreased with temperature. This study is a first step towards developing alternative pest management strategies in the framework of sustainable vegetable production systems.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


Sign in / Sign up

Export Citation Format

Share Document