Bimodal Siliciclastic Systems—The Case of The Iberian Pyrite Belt

Author(s):  
D. Carvalho ◽  
F. J. A. S. Barriga ◽  
J. Munhá
Keyword(s):  
2012 ◽  
Vol 27 (10) ◽  
pp. 1944-1952 ◽  
Author(s):  
Aguasanta M. Sarmiento ◽  
Manuel A. Caraballo ◽  
Daniel Sanchez-Rodas ◽  
José Miguel Nieto ◽  
Annika Parviainen

2021 ◽  
Author(s):  
Filipa Luz ◽  
António Mateus ◽  
Ezequiel Ferreira ◽  
Colombo G. Tassinari ◽  
Jorge Figueiras

Abstract The boundary in the Iberian Pyrite Belt is a world-class metallogenic district developed at the Devonian-Carboniferous boundary the Iberian Variscides that currently has seven active mines: Neves Corvo (Cu-Zn-Sn) and Aljustrel (Cu-Zn) in Portugal, and Riotinto (Cu), Las Cruces (Cu), Aguas Teñidas (Cu-Zn-Pb), Sotiel-Coronada (Cu-Zn-Pb), and La Magdalena (Cu-Zn-Pb) in Spain. The Iberian Pyrite Belt massive sulfide ores are usually hosted in the lower sections of the volcano-sedimentary complex (late Famennian to late Visean), but they also occur in the uppermost levels of the phyllite-quartzite group at the Neves Corvo deposit, stratigraphically below the volcano-sedimentary complex. A Pb-Nd-Sr isotope dataset was obtained for 98 Iberian Pyrite Belt metapelite samples (from Givetian to upper Visean), representing several phyllite-quartzite group and volcano-sedimentary complex sections that include the footwall and hanging-wall domains of ore horizons at the Neves Corvo, Aljustrel, and Lousal mines. The combination of whole-rock Nd and Sr isotopes with Th/Sc ratios shows that the siliciclastic components of Iberian Pyrite Belt metapelites are derived from older quartz-feldspathic basement rocks (–11 ≤ εNdinitial(i) ≤ –8 and (87Sr/86Sr)i up to 0.727). The younger volcano-sedimentary complex metapelites (upper Tournaisian) often comprise volcanic-derived constituents with a juvenile isotopic signature, shifting the εNdi up to +0.2. The Pb isotope data confirm that the phyllite-quartzite group and volcano-sedimentary complex successions are crustal reservoirs for metals found in the deposits. In Neves Corvo, where there is more significant Sn- and Cu-rich mineralization, the higher (206Pb/204Pb)i and (207Pb/204Pb)i values displayed by phyllite-quartzite group and lower volcano-sedimentary complex metapelites (up to 15.66 and 18.33, respectively) suggest additional contributions to the metal budget from a deeper and more radiogenic source. The proximity to Iberian Pyrite Belt massive sulfide ore systems hosted in metapelite successions is observed when (207Pb/204Pb)i >15.60 and Fe2O3/TiO2 or (Cu+Zn+Pb)/Sc >10. These are important criteria that should be considered in geochemical exploration surveys designed for the Iberian Pyrite Belt.


2018 ◽  
Vol 54 (6) ◽  
pp. 913-934 ◽  
Author(s):  
Jesús Velasco-Acebes ◽  
Fernando Tornos ◽  
Abiel T. Kidane ◽  
Michael Wiedenbeck ◽  
Francisco Velasco ◽  
...  

2018 ◽  
Vol 82 (S1) ◽  
pp. S5-S41 ◽  
Author(s):  
J. R. S. Carvalho ◽  
J. M. R. S. Relvas ◽  
A. M. M. Pinto ◽  
M. Frenzel ◽  
J. Krause ◽  
...  

ABSTRACTHigh concentrations of indium (In) and selenium (Se) have been reported in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. The distribution of these ore metals in the deposit is complex as a result of the combined effects of early ore-forming processes and late tectonometamorphic remobilization. The In and Se contents are higher in Cu-rich ore types, and lower in Zn-rich ore types. At the deposit scale, both In and Se correlate positively with Cu, whereas their correlations with Zn are close to zero. This argues for a genetic connection between Cu, In and Se in terms of metal sourcing and precipitation. However, re-distribution and re-concentration of In and Se associated with tectonometamorphic deformation are also processes of major importance for the actual distribution of these metals throughout the whole deposit. Although minor roquesite and other In-bearing phases were recognized, it is clear that most In within the deposit is found incorporated within sphalerite and chalcopyrite. When chalcopyrite and sphalerite coexist, the In content in sphalerite (avg. 1400 ppm) is, on average, 2–3 times higher than in chalcopyrite (avg. 660 ppm). The In content in stannite (avg. 1.3 wt.%) is even higher than in sphalerite, but the overall abundance of stannite is subordinate to either sphalerite or chalcopyrite. Selenium is dispersed widely between many different ore minerals, but galena is the main Se-carrier. On average, the Se content in galena is ~50 times greater than in either chalcopyrite (avg. 610 ppm) or sphalerite (avg. 590 ppm). The copper concentrate produced at Neves-Corvo contains very significant In (+Se) content, well above economic values if the copper smelters recovered it. Moreover, the high In content of sphalerite from some Cu-Zn ores, or associated with shear structures, could possibly justify, in the future, a selective exploitation strategy for the production of an In-rich zinc concentrate.


2016 ◽  
Vol 79 ◽  
pp. 254-267 ◽  
Author(s):  
A. Martin-Izard ◽  
D. Arias ◽  
M. Arias ◽  
P. Gumiel ◽  
D.J. Sanderson ◽  
...  

2013 ◽  
Vol 20 (11) ◽  
pp. 7509-7519 ◽  
Author(s):  
Jose M. Nieto ◽  
Aguasanta M. Sarmiento ◽  
Carlos R. Canovas ◽  
Manuel Olias ◽  
Carlos Ayora

Sign in / Sign up

Export Citation Format

Share Document