Pb-Nd-Sr Isotope Geochemistry of Metapelites from the Iberian Pyrite Belt and Its Relevance to Provenance Analysis and Mineral Exploration Surveys

2021 ◽  
Author(s):  
Filipa Luz ◽  
António Mateus ◽  
Ezequiel Ferreira ◽  
Colombo G. Tassinari ◽  
Jorge Figueiras

Abstract The boundary in the Iberian Pyrite Belt is a world-class metallogenic district developed at the Devonian-Carboniferous boundary the Iberian Variscides that currently has seven active mines: Neves Corvo (Cu-Zn-Sn) and Aljustrel (Cu-Zn) in Portugal, and Riotinto (Cu), Las Cruces (Cu), Aguas Teñidas (Cu-Zn-Pb), Sotiel-Coronada (Cu-Zn-Pb), and La Magdalena (Cu-Zn-Pb) in Spain. The Iberian Pyrite Belt massive sulfide ores are usually hosted in the lower sections of the volcano-sedimentary complex (late Famennian to late Visean), but they also occur in the uppermost levels of the phyllite-quartzite group at the Neves Corvo deposit, stratigraphically below the volcano-sedimentary complex. A Pb-Nd-Sr isotope dataset was obtained for 98 Iberian Pyrite Belt metapelite samples (from Givetian to upper Visean), representing several phyllite-quartzite group and volcano-sedimentary complex sections that include the footwall and hanging-wall domains of ore horizons at the Neves Corvo, Aljustrel, and Lousal mines. The combination of whole-rock Nd and Sr isotopes with Th/Sc ratios shows that the siliciclastic components of Iberian Pyrite Belt metapelites are derived from older quartz-feldspathic basement rocks (–11 ≤ εNdinitial(i) ≤ –8 and (87Sr/86Sr)i up to 0.727). The younger volcano-sedimentary complex metapelites (upper Tournaisian) often comprise volcanic-derived constituents with a juvenile isotopic signature, shifting the εNdi up to +0.2. The Pb isotope data confirm that the phyllite-quartzite group and volcano-sedimentary complex successions are crustal reservoirs for metals found in the deposits. In Neves Corvo, where there is more significant Sn- and Cu-rich mineralization, the higher (206Pb/204Pb)i and (207Pb/204Pb)i values displayed by phyllite-quartzite group and lower volcano-sedimentary complex metapelites (up to 15.66 and 18.33, respectively) suggest additional contributions to the metal budget from a deeper and more radiogenic source. The proximity to Iberian Pyrite Belt massive sulfide ore systems hosted in metapelite successions is observed when (207Pb/204Pb)i >15.60 and Fe2O3/TiO2 or (Cu+Zn+Pb)/Sc >10. These are important criteria that should be considered in geochemical exploration surveys designed for the Iberian Pyrite Belt.

2018 ◽  
Vol 54 (6) ◽  
pp. 913-934 ◽  
Author(s):  
Jesús Velasco-Acebes ◽  
Fernando Tornos ◽  
Abiel T. Kidane ◽  
Michael Wiedenbeck ◽  
Francisco Velasco ◽  
...  

1993 ◽  
Vol 30 (4) ◽  
pp. 731-742 ◽  
Author(s):  
Maurice Pagel ◽  
Annie Michard ◽  
Martine Juteau ◽  
Laurent Turpin

The Sm–Nd, Pb–Pb, and Rb–Sr isotope geochemistry of graphitic metapelitic gneisses and their altered equivalents from the Cigar Lake area (Saskatchewan, Canada) has been investigated. Some granitic gneisses were also analyzed for Pb–Pb and Rb–Sr. Sm–Nd data show that the metapelitic gneisses are composed of detritus from heterogeneous, mainly mantle-derived Archean rocks (2.5–2.6 Ga) and that the Sm–Nd system has not been significantly perturbed during subsequent alteration and metamorphic events. The Pb–Pb age for samples of the less altered graphitic metapelitic gneisses is 1.77 ± 0.03 Ga. The crustal common Pb is located on the Pb–Pb isochron, but there are different zones with high and variable U/Pb ratios (μ = 15–280). The Pb–Pb age for the granitic gneisses is 1.79 ± 0.11 Ma. The Pb isotope data show that there has been no major uranium redistribution in the basement after the Hudsonian orogeny. However, there has been a strong perturbation of the U–Pb system in the regolithic zone beneath the Athabasca cover. In some samples, uranium was added during the mineralizing event. The Rb–Sr system in the graphitic metapelitic gneisses was also affected.The 87Sr/86Sr ratio in pitchblende is 0.709. At 1.3 Ga, there is a strong contrast between the 87Sr/86Sr ratio in the Athabasca sandstones (0.706–0.710) and the 87Sr/86Sr ratio in the metapelitic gneisses from the basement (0.725–0.775). The upper zone of the regolith is characterized by a low 87Sr/86Sr ratio (0.705–0.707). The Pb–Pb and Rb–Sr data are consistent with the circulation of a fluid with a low 87Sr/86Sr ratio, derived from the sedimentary cover; this fluid passed through the most permeable zones of the basement rocks, especially the regolith. The mineralizing fluid had a 87Sr/86Sr value typical of a fluid in equilibrium with the Athabasca sandstones.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 653 ◽  
Author(s):  
Gabriel R. Almodóvar ◽  
Lola Yesares ◽  
Reinaldo Sáez ◽  
Manuel Toscano ◽  
Felipe González ◽  
...  

The Iberian Pyrite Belt (IPB) is recognized as having one of the major concentrations of volcanogenic massive sulfide (VMS) deposits on Earth. Original resources of about 2000 Mt of massive sulfides have been reported in the province. Recent classifications have considered the IPB deposits as the bimodal siliciclastic subtype, although major differences can be recognized among them. The main ones concern the hosting rocks. To the north, volcanic and volcaniclastic depositional environments predominate, whereas to the south, black shale-hosted VMS prevail. The mineral composition is quite simple, with pyrite as the main mineral phase, and sphalerite, galena, and chalcopyrite as major components. A suite of minor minerals is also present, including arsenopyrite, tetrahedrite–tennantite, cobaltite, Sb–As–Bi sulfosalts, gold, and electrum. Common oxidized phases include magnetite, hematite, cassiterite, and barite. The spatial relationship between all these minerals provides a very rich textural framework. A careful textural analysis reported here leads to a general model for the genetic evolution of the IPB massive sulfides, including four main stages: (1) Sedimentary/diagenetic replacement process on hosting rocks; (2) sulfides recrystallization at rising temperature; (3) metal distillation and sulfides maturation related to late Sb-bearing hydrothermal fluids; and (4) metal remobilization associated with the Variscan tectonism. The proposed model can provide new tools for mineral exploration as well as for mining and metallurgy.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1931-1966
Author(s):  
Guillem Gisbert ◽  
Fernando Tornos ◽  
Emma Losantos ◽  
Juan Manuel Pons ◽  
Juan Carlos Videira

Abstract. In this work we have performed a detailed study of vectors to ore to a representative volcanic-rock-hosted replacive volcanogenic massive sulfide (VMS) deposit located in the northern Iberian Pyrite Belt (Spain), the Aguas Teñidas deposit. The investigated vectors include the following: (1) mineralogical zoning, (2) host sequence characterization and mineralized unit identification based on whole rock geochemistry discrimination diagrams, (3) study of the characteristics and behaviour of whole rock geochemical anomalies around the ore (e.g. alteration-related compositional changes, characteristics and extent of geochemical halos of indicative elements such as Cu, Zn, Pb, Sb, Tl, and Ba around the deposit), and (4) application of portable X-ray fluorescence (p-XRF) analysis to the detection of the previous vectors. In the footwall, a concentric cone-shaped hydrothermal alteration zone bearing the stockwork passes laterally, from core to edge, from quartz (only local) to chlorite–quartz, sericite–chlorite–quartz, and sericite–quartz alteration zones. The hydrothermal alteration is also found in the hanging wall despite being tectonically allochthonous to the orebody: a proximal sericite alteration zone is followed by a more distal albite-rich one. Whole rock major elements show an increase in alteration indexes (e.g. AI, CCPI) towards the mineralization, a general SiO2 enrichment, and FeO enrichment as well as K2O and Na2O depletion towards the centre of the hydrothermal system, with MgO showing a less systematic behaviour. K2O and Na2O leached from the centre of the system are transported and deposited in more external areas. Copper, Pb, and Zn produce proximal anomalies around mineralized areas, with the more mobile Sb, Tl, and Ba generating wider halos. Whereas Sb and Tl halos form around all mineralized areas, Ba anomalies are restricted to areas around the massive sulfide body. Our results show that proposed vectors, or adaptations designed to overcome p-XRF limitations, can be confidently used by analysing unprepared hand specimens, including the external rough curved surface of drill cores. The data presented in this work are not only applicable to VMS exploration in the Iberian Pyrite Belt, but on a broader scale they will also contribute to improving our general understanding of vectors to ore in replacive-type VMS deposits.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Mónica Arias ◽  
Pablo Nuñez ◽  
Daniel Arias ◽  
Pablo Gumiel ◽  
Cesar Castañón ◽  
...  

The Touro volcanogenic massive sulfide (VMS) deposit is located in the NW of the Iberian Variscan massif in the Galicia-Trás-os-Montes Zone, an amalgamation of several allochthonous terrains. The Órdenes complex is the most extensive of the allochthone complexes, and amphibolites and paragneisses host the deposit, characterized as being massive or semimassive (stringers) sulfides, mostly made up of pyrrhotite and chalcopyrite. The total resources are 103 Mt, containing 0.41% copper. A 3D model of the different orebodies and host rocks was generated using data from 1090 drill core logs. The model revealed that the structure of the area is a N–S-trending antiform. The orebodies crop out in the limbs and in the hinge zone. The mineralized structures are mostly tabular, up to 100 m in thickness and subhorizontal. Based on the petrography, geochemistry and the 3D model, the Touro deposit is classified as a VMS of the mafic-siliciclastic type formed in an Ordovician back-arc setting, which was buried and metamorphosed in Middle Devonian.


1984 ◽  
Vol 79 (5) ◽  
pp. 933-946 ◽  
Author(s):  
Bruce E. Nesbitt ◽  
Fred J. Longstaffe ◽  
David R. Shaw ◽  
Karlis Muehlenbachs

Sign in / Sign up

Export Citation Format

Share Document