inversion tectonics
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 2)

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayumu Miyakawa ◽  
Tomoya Abe ◽  
Tatsuya Sumita ◽  
Makoto Otsubo

An amendment to this paper has been published and can be accessed via the original article.


Solid Earth ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1865-1889 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on a large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversion structures, defined by the location of the null points. In these instances, the closures have a relatively small vertical amplitude but are simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocenters which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window, effectively terminating the charge once the inversion has occurred. Cases of inversion tectonics can be grouped into two main modes. A structure develops in Mode I inversion if the syn-rift succession in the preexisting extensional basin unit is thicker than its post-rift cover including the pre- and syn-inversion part of it. In contrast, a structure evolves in Mode II inversion if the opposite syn- versus post-rift sequence thickness ratio can be observed. These two modes have different impacts on the petroleum system elements in any given inversion structure. Mode I inversion tends to develop in failed intracontinental rifts and proximal passive margins, and Mode II structures are associated with back-arc basins and distal parts of passive margins. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of crustal extension by normal faulting.


Author(s):  
Ayumu Miyakawa ◽  
Tomoya Abe ◽  
Tatsuya Sumita ◽  
Makoto Otsubo

AbstractThe Mikawa Bay Region, central Japan, is characterized by many active faults recording Quaternary activities. It is, however, difficult to understand the overall tectonic character of the region due to a thick sedimentary cover. We report the first finding of Neogene basin inversion in southwest Japan by estimating the depth and structure of the basement surface in the Mikawa Bay Region by analyzing gravity data. Our gravity basement map and two-dimensional density-structure model automatically determined using the genetic algorithm revealed a half-graben bounded on the south by the north-dipping Utsumi Fault. The motion of the Utsumi Fault, which inverted from normal faulting during the Miocene to recent reverse faulting, indicated the inversion of the half-graben. The timing of the inversion of the fault motion, i.e., the reverse faulting of the Miocene normal fault, can be compared with an episode of basin inversion observed at the eastern margin of the Japan Sea, northeastern Japan. The Takahama Fault in the southwestern part of the Nishi–Mikawa Plain is considered to have formed as a result of the backthrust of the Utsumi Fault under inversion tectonics. If the Takahama Fault is indeed the backthrust fault of the Utsumi Fault, the root of the Takahama Fault may be deep such that the Takahama Fault is seismogenic and linked to the 1945 Mikawa earthquake.


2020 ◽  
Author(s):  
Ayumu Miyakawa ◽  
Tomoya Abe ◽  
Tatsuya Sumita ◽  
Makoto Otsubo

Abstract The Mikawa Bay Region, central Japan, is characterized by many active faults recording Quaternary activities. It is, however, difficult to understand the overall tectonic character of the region due to a thick sedimentary cover. We report the first finding of Neogene basin inversion in southwest Japan by estimating the depth and structure of the basement surface in the Mikawa Bay Region by analyzing gravity data. Our gravity basement map and two-dimensional density-structure model automatically determined using the genetic algorithm revealed a half-graben bounded on the south by the north-dipping Utsumi Fault. The motion of the Utsumi Fault, which inverted from normal faulting during the Miocene to recent reverse faulting, indicated the inversion of the half-graben. The timing of the inversion of the fault motion, i.e., the reverse faulting of the Miocene normal fault, can be compared with an episode of basin inversion observed at the eastern margin of the Japan Sea, northeastern Japan. The Takahama Fault in the southwestern part of the Nishi–Mikawa Plain is considered to have formed as a result of the backthrust of the Utsumi Fault under inversion tectonics. If the Takahama Fault is indeed the backthrust fault of the Utsumi Fault, the root of the Takahama Fault may be deep such that the Takahama Fault is seismogenic and linked to the 1945 Mikawa earthquake.


2020 ◽  
Author(s):  
Ayumu Miyakawa ◽  
Tomoya Abe ◽  
Tatsuya Sumita ◽  
Makoto Otsubo

Abstract The Mikawa Bay Region, central Japan, is characterized by many active faults recording Quaternary activities. It is, however, difficult to understand the overall tectonic character of the region due to a thick sedimentary cover. We report the first finding of Neogene basin inversion in southwest Japan by estimating the depth and structure of the basement surface in the Mikawa Bay Region by analyzing gravity data. Our gravity basement map and two-dimensional density-structure modeling revealed a half graben bounded on the south by the north-dipping Utsumi Fault. The motion of the Utsumi Fault, which inverted from normal faulting during the Miocene to recent reverse faulting, indicated the inversion of the half graben. The timing of the inversion of the fault motion, i.e. the reverse faulting of the Miocene normal fault, can be compared with an episode of basin inversion observed at the eastern margin of the Japan Sea, northeastern Japan. The Takahama Fault in the southwestern part of the Nishi–Mikawa Plain is considered to have formed as a result of the backthrust of the Utsumi Fault under inversion tectonics. If the Takahama Fault is indeed the backthrust fault of the Utsumi Fault, the root of the Takahama Fault may be deep such that the Takahama Fault is seismogenic and linked to the 1945 Mikawa earthquake.


2020 ◽  
Author(s):  
Ayumu Miyakawa ◽  
Tomoya Abe ◽  
Tatsuya Sumita ◽  
Makoto Otsubo

Abstract The Mikawa Bay Region, central Japan, is characterized by many active faults recording Quaternary activity. It is, however, difficult to understand the overall tectonic character of the region due to the thick sediments in this region. We estimated the depth and the structure of the basement top in the Mikawa Bay Region through the analysis of gravity data, compiling publicly available gravity data and our own gravity measurements in the central part of the region. The gravity basement map shows the deepening of the basement top from the Nishi-Mikawa Plain to the Chita Peninsula. Two-dimensional modeling constrains the orientation of the Utsumi and Takahama faults. The fact that the basement top structure related to the Kou Fault is insignificant in the gravity data indicates that the geometry of the Kou Fault is small relative to that of the Utsumi Fault. The basement top structure from the Nishi-Mikawa Plain to the Chita Peninsula reveals a half graben structure bounded by the Utsumi Fault. The inverse motion of the Utsumi Fault, which underwent normal faulting during the Miocene followed by recent reverse faulting, is interpreted to reflect the inversion tectonics of the half graben. The timing of the inversion tectonics, i.e. the reverse faulting of the Miocene normal fault, can be compared to an episode of basin inversion observed at the eastern margin of the Japan Sea, northeastern Japan. The Takahama Fault in the center of the Nishi-Mikawa Plain is considered to have formed as a result of the backthrust of the Utsumi Fault under inversion tectonics. If the Takahama Fault is indeed the backthrust fault of the Utsumi Fault, the root of the Takahama Fault may be deep such that the Takahama Fault is seismogenic and linked to the 1945 Mikawa earthquake.


2020 ◽  
Author(s):  
Stefano Patruno ◽  
Vittorio Scisciani

<p>Post-orogenetic extensional/gravitational collapse events constitute a relatively poorly understood tectonic process, which is responsible for the quick and effective dismantling of the thickened crust and topographic bulge of fold-and-thrust belt edifices. These events are also responsible for the accumulation of very thick post-orogenetic successions and, in case of active extension, may trigger moderate to strong earthquakes resulting in obvious seismic hazards (e.g., the 1915 Mg 7.0 Fucino earthquake in Central Italy, which caused 30,000 victims)</p><p>Here, we combine seismic interpretation coupled with well analyses, basin modelling and a thorough literature review, in order to compare an ancient and a modern example of study areas subject to post-orogenetic collapse. The Devonian-age Old Red Sandstones of north-western Europe and ?Plio-Quaternary fill of the Fucino intramontane extensional basin in the central Apennines (Italy) share several stratigraphic, depositional and tectonic characteristics. Both are characterized by remarkably similar seismic-stratigraphic architecture (with syn-depositional half-grabens) and maximum thickness of >1,500 metres. In the Fucino, the border faults associated to the main tectonic depocentres achieved maximum throw rates of 1,000-1,400 mm/kyr.</p><p>Both units comprise thick continental siliciclastic successions, dominated by lacustrine and alluvial to fluvio-deltaic facies. The facies architecture reveals a progressive transition from localized, fault-bounded depocentres to transgressive lacustrine successions in wider basins that are less reliant on the sole fault-driven subsidence. The studied units were deposited due to high and quick tectonic subsidence which took place very shortly after the end (or during?) of crustal shortening processes (respectively Caledonian and Apenninic orogenesis) and in a post-orogenic collapse context.</p><p>In both study areas, the sedimentation of the thick continental units are intimately associated to a polyphase inversion tectonics, with pre-existing inherited deep-seated discontinuities affected, in places, first by a positive and subsequently by a negative reactivation during the extensional collapse. A further element common in the two study areas, is a strike-slip or oblique tectonics occurring during or immediately prior to the extensional collapse achieved by the normal faulting. This has been interpreted as a consequence of the gradual rotation of the stress vectors around their axes, culminating in the relaxation of the horizontal compressive stress and the onset of the post-orogenetic extensional/gravitational collapse process itself. For example, in the Fucino Basin, maximum Plio-Quaternary sediment thicknesses of >1700 m occur in two tectonic depocentres, situated respectively to the north and east of the basin. In contrast, the south-eastern striking dip-slip border faults bounding the eastern edge of the Fucino show maximum slip rates in the Lower-Middle Pleistocene, with evidence (e.g., Gioia dei Marsi) for a very recent activity, possibly linked with the 1915 seismic event.</p><p>The study of post-orogenic extensional collapse by comparison of ancient and recent basins suggest that in these settings poly-phase tectonic inversion commonly occurs and promote multiple reactivation of inherited zones of weakness. The comprehension of the common and dissimilar features, may be fundamental to better understand the mechanism and evolution of post-orogenic chain reworking and for natural resources and geological hazards assessment, including earthquakes. The coupled analysis of an ancient and recent example enables just that.</p>


Sign in / Sign up

Export Citation Format

Share Document