ore types
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 25)

H-INDEX

8
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Quentin Dehaine ◽  
Laurens T. Tijsseling ◽  
Gavyn K. Rollinson ◽  
Mike W. N. Buxton ◽  
Hylke J. Glass

Cobalt (Co) mine production primarily originates from the sediment-hosted copper (Cu) deposits of the Democratic Republic of Congo (DRC). These deposits usually consist of three ore zones with a supergene oxide ore blanket overlying a transition zone which grades into a sulphide zone at depth. Each of these zones display a mineral assemblage with varying gangue mineralogy and, most importantly, a distinct state of oxidation of the mineralisation. This has direct implications for Cu and Co extraction during mineral processing as it dictates which processing method is to be used (i.e., leaching vs. flotation) and affects the performance of these. To optimise resource efficiency, reduce technical risks and environmental impacts, comprehensive understanding of variation of ore mineralogy and texture in the deposit is essential. By defining geometallurgical ore types according to their inferred metallurgical behaviour, this information can serve to classify the resources and improve resource management. To obtain insight into the spatial distribution of mineral grades, it is necessary to develop techniques that have the potential to measure rapidly and, preferably, within the mine at relatively low-cost. In this study, the application of portable Fourier transformed infrared (FTIR) spectroscopy is investigated to measure the mineralogy of drill core samples. A set of samples from a sediment-hosted Cu-Co deposit in DRC was selected to test this approach. Results were validated using automated mineralogy (QEMSCAN). Prediction of gangue and target mineral grades from the FTIR spectra was achieved through partial least squares regression (PLS-R) combined with competitive adaptive reweighted sampling (CARS). It is shown that the modal mineralogy obtained from FTIR can be used to classify the ore according to type of mineralisation and gangue mineralogy into geometallurgical ore types. This classification supports selection of a suitable processing route and is likely to affect the overall process performance.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Artem V. Mokrushin ◽  
Valery F. Smol’kin

In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoproterozoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O3 average-weighted content in ordinary and rich ores of the deposit is 16.65 and 38.76 wt.%, respectively, at gradually changing concentrations within the rich, ordinary and poor ore types and ore body in general. The ores of the Sopcheozero deposit, having a ratio of Cr2O3/FeOtotal = 0.9–1.7, can serve as raw materials for the refractory and chemical industries. The ore Cr-spinel (magnochromite and magnoalumochromite) is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity. The coexisting Cr-spinel-olivine pairs crystallized at temperatures from 1258 to 1163 °C, with accessory Cr-spinel crystallizing at relatively low, while ore Cr-spinel at higher temperatures. The host rock and ore distinguish with widespread plastic deformations of olivine at the postcrystallization phase under conditions of high temperature (above 400 °C) and pressure (5 kbar). At the post magmatic Svecofennian stage (1.84 Ga), the deposit, jointly with the Monchepluton, was subject to diverse tectonic deformations.


2021 ◽  
pp. 63-73
Author(s):  
IRINA GABLINA

Based on long-term studies of cupriferous sandstone and shale deposits, as well as deepsea sulfide ores, various types of geochemical barriers where sulfides form are shown. Cupriferous sandstones and shales form as metals precipitate from redbed reservoir waters on H2S geochemical barrier. Syngenetic and epigenetic barrier types are identified. Oceanic sulfide ores from the Central Atlantic region were studied; as a result, a new hydrothermal-metasomatic sediment-hosted mineralization type was found, along with previously known sulfide ore types (massive ores on the seafloor and stockwork ores in substrate rocks). Geochemical seafloor sulfide formation environments and those in biogenic carbonate bottom sediments are examined.


2021 ◽  
Vol 192 ◽  
pp. 22
Author(s):  
Thomas Poitrenaud ◽  
Éric Marcoux ◽  
Romain Augier ◽  
Marc Poujol

A field study combined with a laboratory study and 3D modeling have been performed in order to decipher the genesis of the Salau deposit W-Au mineralization (Pyrenees, France), one of the most important for tungsten in Europe. Results show the existence of two superimposed ore types, emplaced ca. 10 km depth and within decreasing temperature conditions: a calcic silicates skarn with rare scheelite and disseminated sulphides followed by a mineralized breccia with massive sulphides (pyrrhotite and chalcopyrite dominant), coarse-grained scheelite and gold, representing the main part of the ore mined in the past. This breccia is localized in ductile-brittle shear-zones which crosscut the granodiorite. U/Pb dating on zircon, apatite and scheelite, previously realized, confirmed this polyphase evolution. These two types of mineralization, linked to the emplacement of two successive intrusions as confirmed by sulphur isotopic analysis, granodioritic then leucogranitic, can be classified as belonging to the Intrusion-Related Gold Deposit type (IRGD). The emplacement of the high-grade gold and scheelite breccia was initiated by the progressive localization of the regional deformation in the Axial Zone of the Pyrenees during the Permian within E-W dextral-reverse faults.


2020 ◽  
pp. 3-34
Author(s):  
A.V. Kasatkin ◽  
S.Yu. Stepanov ◽  
M.V. Tsyganko ◽  
R. Skoda ◽  
Nestola F. ◽  
...  

This work is the frst paper in a series of publications dedicated to mineralogy of the Vorontsovskoe gold deposit in the Northern Urals. The deposit is unique for both Russia and world with regard to the diversity and originality of Tl–Hg–Mn–As–Sb–S mineralization. Based on available literature and our data, we compiled an exhaustive list of 209 mineral species of the deposit, including eight new minerals found by the authors: vorontsovite, ferrovorontsovite, tsygankoite, gladkovskyite, luborzakite, pokhodyashinite, gungerite and auerbakhite. In addition, 40 and 89 minerals are found for the frst time in Russia and the deposit, respectively. Systematic studies of ores revealed nine main mineral assemblages, seven of which are confned to carbonate breccias. They contain more than 70 rare sulfdes, tellurides and sulfosalts including 30, 12 and 9 minerals, where Tl, Hg and Mn are species-defning elements, respectively. In this paper, we characterize the history of study of the deposit, its geological position and structure, ore types, mineral assemblages, and analytical methods.


2020 ◽  
Vol 72 (3) ◽  
pp. A200720
Author(s):  
Sebastián Betancur-Figueroa ◽  
Cristina Villanova-de-Benavent ◽  
Joaquín A. Proenza ◽  
Marion B. Weber ◽  
Natalia Acevedo ◽  
...  

Fe-Ti oxide ores are commonly associated with Proterozoic massif-type anorthosite bodies emplaced during the Grenville orogeny (~1.2-1.0 Ga). Some of these anorthositic bodies occur in the northernmost part of the Santa Marta Massif, Colombia. They locally contain crosscutting Fe-Ti(-V) ore bodies between the El Hierro creek and the Don Dieguito river. We have distinguished two types of Fe-Ti(-V) ores: i) oxide-apatite norite (fine grained ilmenite and magnetite disseminated in an assemblage of apatite, amphibole, chlorite, rutile and sericitized plagioclase) and ii) banded nelsonite (coarser grained ilmenite, magnetite and apatite distributed in bands, with minor baddeleyite, srilankite and högbomite). Ilmenite in the two ore types display distinct hematite exsolution features: a)needle-like in the oxide-apatite norite ore; and b) two generations of exsolutions in the banded ore. Magnetite shows similar Ti and V contents in both ore types (0.4 wt % TiO2 and 0.5 wt % V2O3 on average in the oxide-apatite norite ore, 0.5 wt % TiO2 and 0.4 wt % V2O3 in the banded ore), whereas ilmenite has higher hematite, pyrophanite and geikielite components in the banded ore. The ores might have formed from the combination of fractional crystallization and magma mixing, with exsolution occurring probably at 575-600°C. This first detailed mineralogical and textural study of Fe-Ti(-V) oxide ores in anorthosite massifs from Colombia suggests that the Santa Marta Massif is an interesting target for future research.


2020 ◽  
Vol 158 ◽  
pp. 106590
Author(s):  
José R.O. França ◽  
Gabriel K.P. Barrios ◽  
Henrique D.G. Turrer ◽  
Luís Marcelo Tavares
Keyword(s):  
Iron Ore ◽  

Sign in / Sign up

Export Citation Format

Share Document