scholarly journals Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

2016 ◽  
Vol 16 (4) ◽  
pp. 238-245 ◽  
Author(s):  
Ali Rohan ◽  
Sung Ho Kim
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Furqan Asghar ◽  
Muhammad Talha ◽  
Sung Ho Kim

Recently, electrical drives generally associate inverter and induction machine. Therefore, inverter must be taken into consideration along with induction motor in order to provide a relevant and efficient diagnosis of these systems. Various faults in inverter may influence the system operation by unexpected maintenance, which increases the cost factor and reduces overall efficiency. In this paper, fault detection and diagnosis based on features extraction and neural network technique for three-phase inverter is presented. Basic purpose of this fault detection and diagnosis system is to detect single or multiple faults efficiently. Several features are extracted from the Clarke transformed output current and used in neural network as input for fault detection and diagnosis. Hence, some simulation study as well as hardware implementation and experimentation is carried out to verify the feasibility of the proposed scheme. Results show that the designed system not only detects faults easily, but also can effectively differentiate between multiple faults. These results prove the credibility and show the satisfactory performance of designed system. Results prove the supremacy of designed system over previous feature extraction fault systems as it can detect and diagnose faults in a single cycle as compared to previous multicycles detection with high accuracy.


2012 ◽  
Vol 476-478 ◽  
pp. 2384-2388
Author(s):  
Min Qiang Dai ◽  
Wei Cai ◽  
Sheng Dun Zhao

The magnetic field and vibration signal of electromagnetic direction valve can be detected real-timely by a non-intrusive on line detection device, which can use to monitor working state of the valve. A method of fault detection and diagnosis for electromagnetic direction valve from the signal detected by the non-intrusive on line detection device is presented in this paper. The wave frequency bands energy analysis method is adopted to distinguish the electromagnetic direction valve’s state, and the vibration signal are decomposed by three-layer wavelet packet which wavelet basis is db10. The fault identification method is based on BP artificial neural network (ANN), which is the most well-known three-layers BP ANN whose input and output layers have 8 and 3 neurons respectively.


Sign in / Sign up

Export Citation Format

Share Document