Anti-inflammatory effects of PPARγ on human dental pulp cells

2006 ◽  
Vol 31 (3) ◽  
pp. 203
Author(s):  
Jeong-Hee Kim
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yoo-Jin Ko ◽  
Kil-Young Kwon ◽  
Kee-Yeon Kum ◽  
Woo-Cheol Lee ◽  
Seung-Ho Baek ◽  
...  

Porphyromonas gingivalisis considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated byP. gingivalisLPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-αand IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibitedP. gingivalisLPS-induced TNF-αand IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may preventP. gingivalisLPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability.


2019 ◽  
Vol 234 (11) ◽  
pp. 21331-21341 ◽  
Author(s):  
Keisuke Nara ◽  
Nobuyuki Kawashima ◽  
Sonoko Noda ◽  
Mayuko Fujii ◽  
Kentaro Hashimoto ◽  
...  

2010 ◽  
Vol 118 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Tadashi Nakanishi ◽  
Kayo Mukai ◽  
Hiromichi Yumoto ◽  
Kouji Hirao ◽  
Yoshitaka Hosokawa ◽  
...  

PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Caroline L. de Lima ◽  
Bruna R. Amorim ◽  
Carine Royer ◽  
Augusto P. Resende ◽  
Maria F. Borin ◽  
...  

Controlling the inflammatory response to restore tissue homeostasis is a crucial step to maintain tooth vitality after pathogen removal from caries-affected dental tissues. The nuclear peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is a ligand-activated transcription factor with emerging anti-inflammatory roles in many cells and tissues. However, its expression and functions are poorly understood in human dental pulp cells (hDPCs). Thus, this study evaluated PPARβ/δ expression and assessed the anti-inflammatory effects evoked by activation of PPARβ/δ in lipopolysaccharide- (LPS-) induced hDPCs. Our results showed that hDPCs constitutively expressed PPARβ/δ mRNA/protein, and treatment with LPS increased PPARβ/δ mRNA expression. The selective PPARβ/δ agonist GW0742 significantly decreased inflammation-related mRNA expression in hDPCs (IL6, IL1β, TNFα, MMP1, and MMP2) and RAW264.7 cells (Il6 and Tnfα). Further, PPARβ/δ agonist attenuated MMP2/9 gelatinolytic activity in hDPCs. Previously LPS-conditioned hDPCs increased the migration of RAW264.7 cells through the membrane of a Transwell coculture system. Conversely, pretreatment with GW0742 markedly decreased macrophage recruitment. These findings provide among the first evidence that hDPCs express PPARβ/δ. In addition, they suggest that activation of PPARβ/δ by GW0742 can attenuate some cellular and molecular in vitro aspects related to the inflammatory process, pointing out to investigate its potential target role in dental pulp inflammation.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


2016 ◽  
Vol 117 (7) ◽  
pp. 1522-1528 ◽  
Author(s):  
Tomomi Hayama ◽  
Naoto Kamio ◽  
Tatsu Okabe ◽  
Koichiro Muromachi ◽  
Kiyoshi Matsushima

Sign in / Sign up

Export Citation Format

Share Document