scholarly journals Treatment of Anterior Glenoid Rim Fracture with Comminuted Fragment Using Arthroscopic Reduction and AO Headless Compression Screw Fixation - A Case Report -

2011 ◽  
Vol 14 (1) ◽  
pp. 94-98
Author(s):  
Hyung-Sik Kim ◽  
Il-Hyun Koh ◽  
Sung-Guk Kim ◽  
Yong-Min Chun ◽  
Sung-Jae Kim ◽  
...  

2017 ◽  
Vol 22 (01) ◽  
pp. 35-38 ◽  
Author(s):  
Eichi Itadera ◽  
Takahiro Yamazaki

We developed a new internal fixation method for extra-articular fractures at the base of the proximal phalanx using a headless compression screw to achieve rigid fracture fixation through a relatively easy technique. With the metacarpophalangeal joint of the involved finger flexed, a smooth guide-pin is inserted into the intramedullary canal of the proximal phalanx through the metacarpal head and metacarpophalangeal joint. Insertion tunnels are made over the guide-pin using a cannulated drill. Then, a headless cannulated screw is placed into the proximal phalanx. All of five fractures treated by this procedure obtained satisfactory results.



Hand ◽  
2021 ◽  
pp. 155894472097411
Author(s):  
Luke T. Nicholson ◽  
Kristen M. Sochol ◽  
Ali Azad ◽  
Ram Kiran Alluri ◽  
J. Ryan Hill ◽  
...  

Background: Management of scaphoid nonunions with bone loss varies substantially. Commonly, internal fixation consists of a single headless compression screw. Recently, some authors have reported on the theoretical benefits of dual-screw fixation. We hypothesized that using 2 headless compression screws would impart improved stiffness over a single-screw construct. Methods: Using a cadaveric model, we compared biomechanical characteristics of a single tapered 3.5- to 3.6-mm headless compression screw with 2 tapered 2.5- to 2.8-mm headless compression screws in a scaphoid waist nonunion model. The primary outcome measurement was construct stiffness. Secondary outcome measurements included load at 1 and 2 mm of displacement, load to failure for each specimen, and qualitative assessment of mode of failure. Results: Stiffness during load to failure was not significantly different between single- and double-screw configurations ( P = .8). Load to failure demonstrated no statistically significant difference between single- and double-screw configurations. Using a qualitative assessment, the double-screw construct maintained rotational stability more than the single-screw construct ( P = .029). Conclusions: Single- and double-screw fixation constructs in a cadaveric scaphoid nonunion model demonstrate similar construct stiffness, load to failure, and load to 1- and 2-mm displacement. Modes of failure may differ between constructs and represent an area for further study. The theoretical benefit of dual-screw fixation should be weighed against the morphologic limitations to placing 2 screws in a scaphoid nonunion.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
Heng-Li Huang ◽  
...  

Abstract Background Metacarpal shaft fracture is a common fracture in hand trauma injuries. Surgical intervention is indicated when fractures are unstable or involve considerable displacement. Current fixation options include Kirschner wire, bone plates, and intramedullary headless screws. Common complications include joint stiffness, tendon irritation, implant loosening, and cartilage damage. Objective We propose a modified fixation approach using headless compression screws to treat transverse or short-oblique metacarpal shaft fracture. Materials and methods We used a saw blade to model transverse metacarpal neck fractures in 28 fresh porcine metacarpals, which were then treated with the following four fixation methods: (1) locked plate with five locked bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two Kirschner wires (K group), and (4) a headless compression screw (HC group). In the HC group, we proposed a novel fixation model in which the screw trajectory was oblique to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; thus, the screw did not damage the articular cartilage. The specimens were tested using a modified three-point bending test on a material testing system. The maximum fracture forces and stiffness values of the four fixation types were determined by observing the force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the exact Wilcoxon rank sum test with Bonferroni adjustment was performed to conduct paired comparisons among the groups. Results The maximum fracture forces (median ± interquartile range [IQR]) of the LP, RP, HC, and K groups were 173.0 ± 81.0, 156.0 ± 117.9, 60.4 ± 21.0, and 51.8 ± 60.7 N, respectively. In addition, the stiffness values (median ± IQR) of the LP, HC, RP, and K groups were 29.6 ± 3.0, 23.1 ± 5.2, 22.6 ± 2.8, and 14.7 ± 5.6 N/mm, respectively. Conclusion Headless compression screw fixation provides fixation strength similar to locked and regular plates for the fixation of metacarpal shaft fractures. The headless screw was inserted obliquely to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; therefore the articular cartilage iatrogenic injury can be avoidable. This modified fixation method may prevent tendon irritation and joint cartilage violation caused by plating and intramedullary headless screw fixation.



Author(s):  
Hassan A. Qureshi ◽  
Kashyap Komarraju Tadisina ◽  
Gianfranco Frojo ◽  
Kyle Y. Xu ◽  
Bruce A. Kraemer

Abstract Background Isolated traumatic lunate fractures without other surgical carpal bone or ligamentous injuries are extremely rare, with few published reports available to guide management. Lunate fracture management is controversial, and depends on concurrent injuries of adjacent carpal bones, ligaments, risk of ischemia, and displacement. Case Description A 48-year-old right hand dominant man suffered a crush injury to the left hand caught between a forklift and a metal shelf. Radiographs and computed tomography imaging of the left hand and wrist were significant for a displaced Teisen IV fracture of the lunate. A dorsal ligament sparing approach was utilized to access, reduce, and fixate the fracture using a headless compression screw. After immobilization and rehab, at 9 months after initial injury, the patient was back to work on full duty without restriction and pleased with the results of his treatment. Literature Review A literature review of lunate fracture compression screw fixation was performed and revealed a total of three reports indicating successful treatment of fractures, with patients returning to full activity. Clinical Relevance Lunate fractures are rare, often missed, and treating these injuries can be challenging, particularly in the setting of acute trauma. Based on our limited experience, we believe that open reduction and internal fixation of isolated Teisen IV lunate fractures with a headless compression screw is a viable treatment modality with satisfactory outcomes.





Hand ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 798-804 ◽  
Author(s):  
William J. Warrender ◽  
David E. Ruchelsman ◽  
Michael G. Livesey ◽  
Chaitanya S. Mudgal ◽  
Michael Rivlin

Background: There has been a recent increase in the use of headless compression screws for fixation of metacarpal neck and shaft fractures as they offer several advantages, and minimal complications have been reported. This study aimed to evaluate the clinical complications and their solutions following retrograde intramedullary headless compression screw fixation of metacarpal fractures. We describe complications and the approach to their management. Methods: We performed a multicenter case series through retrospective review of all patients treated with intramedullary headless screw fixation of metacarpal fractures by 3 fellowship-trained hand surgeons. Patient demographics, implant used, type of complication, pre- and postoperative radiographs, operative reports, and sequelae were reviewed for each case. We defined complications as infection, loss of fixation, hardware failure, malrotation, nonunion, malunion, metal allergy, and any repeat surgical intervention. Results: Four complications (2.5%) were identified through the review of 160 total metacarpal fractures. One complication was a nickel allergy, one was a broken screw after repeat trauma, and 2 patients had bent intramedullary screws. Screw removal in 3 patients was simple and without complications or persistent limitations. One bent screw with a refracture was left in place. No serious complications were seen. Conclusion: Intramedullary screw fixation of metacarpal fractures is safe with a low incidence of complications (2.5%) that can be safely and effectively managed.



2012 ◽  
Vol 40 (11) ◽  
pp. 2578-2582 ◽  
Author(s):  
Masashi Nagao ◽  
Yoshitomo Saita ◽  
So Kameda ◽  
Hiroaki Seto ◽  
Ryo Sadatsuki ◽  
...  

Background: Internal fixation is advocated as the primary treatment for fifth metatarsal Jones fractures in athletes; however, screw insertion site discomfort and refracture can occur especially in competitive athletes. The ideal implant has not been determined. Hypothesis: Headless compression screw fixation of proximal fifth metatarsal Jones fractures is an effective treatment approach especially in competitive athletes. Study Design: Case series; Evidence level, 4. Methods: We studied 60 athletes treated surgically with a headless compression screw for fifth metatarsal Jones fractures (mean age, 19 years). The mean follow-up time was 178 weeks. We evaluated the clinical and radiographic outcomes of headless compression screw fixation of Jones fractures. Results: All athletes returned to full activity. The mean time to start running after surgery was 6.3 weeks (range, 3-12.7 weeks), and the mean time to full activity after surgery was 11.2 weeks (range, 6-25 weeks). One athlete suffered a delayed union, which healed uneventfully. One athlete suffered a nonunion and underwent reoperation for a screw exchange to an autogenous bone graft harvested from the iliac crest. No screw breakage was reported. No athlete suffered a refracture or discomfort in the screw insertion site. Conclusion: Headless compression screw fixation of fifth metatarsal Jones fractures provided excellent results, allowing athletes to return to full activity without both screw insertion site irritation and clinical refracture.



2017 ◽  
Vol 07 (03) ◽  
pp. 199-204
Author(s):  
Ana Ferrão ◽  
Sandra Alves ◽  
Ruben Caetano ◽  
Frederico Teixeira ◽  
João Jorge

Background The treatment of chronic scapholunate instability is yet a controversial topic. Arthroscopic reduction-association scapholunate technique is a minimally invasive option in which a stable pseudoarthrosis at the scapholunate joint is obtained, allowing some degree of movement while maintaining the normal alignment of the wrist. The purpose of this study was to review the results of arthroscopic reduction-association scapholunate with an absorbable screw. Methods We retrospectively evaluated patients with dynamic or static, but reducible, chronic scapholunate instability who underwent arthroscopic reduction-association scapholunate between 2012 and 2015. An absorbable headless compression screw was used in the technique. Results A total of 33 patients (21 males, 12 females) were included. Average follow-up time was 17 months. At final follow-up, the average postoperative Disabilities of the Arm, Shoulder and Hand (DASH) score was 18 (range, 8–46). The average postoperative grip strength was 30 kg, 73% of the uninjured side. The average extension-palmar flexion arc was 112 degrees, 79% of the uninjured side. The scapholunate angle decreased from 70 degrees preoperatively to 52 degrees postoperatively. In the cases of static lesion, the scapholunate interval decreased from 4.1 mm preoperatively to 2.8 mm at final follow-up. One patient had a breakage of the screw at 4 months, four developed a complex regional pain syndrome, one had a prominence of the screw at the waist of the scaphoid, and four maintained symptoms of instability. From these 10 patients, 5 were submitted to revision surgery. Conclusion The arthroscopic reduction-association technique is capable of maintaining the reduction of the scapholunate joint and of improving symptoms, while preserving range-of-motion. The use of an absorbable screw is an option in this technique, and may diminish screw-related complications.



Sign in / Sign up

Export Citation Format

Share Document