Single Versus Dual Headless Compression Screw Fixation of Scaphoid Nonunions: A Biomechanical Comparison

Hand ◽  
2021 ◽  
pp. 155894472097411
Author(s):  
Luke T. Nicholson ◽  
Kristen M. Sochol ◽  
Ali Azad ◽  
Ram Kiran Alluri ◽  
J. Ryan Hill ◽  
...  

Background: Management of scaphoid nonunions with bone loss varies substantially. Commonly, internal fixation consists of a single headless compression screw. Recently, some authors have reported on the theoretical benefits of dual-screw fixation. We hypothesized that using 2 headless compression screws would impart improved stiffness over a single-screw construct. Methods: Using a cadaveric model, we compared biomechanical characteristics of a single tapered 3.5- to 3.6-mm headless compression screw with 2 tapered 2.5- to 2.8-mm headless compression screws in a scaphoid waist nonunion model. The primary outcome measurement was construct stiffness. Secondary outcome measurements included load at 1 and 2 mm of displacement, load to failure for each specimen, and qualitative assessment of mode of failure. Results: Stiffness during load to failure was not significantly different between single- and double-screw configurations ( P = .8). Load to failure demonstrated no statistically significant difference between single- and double-screw configurations. Using a qualitative assessment, the double-screw construct maintained rotational stability more than the single-screw construct ( P = .029). Conclusions: Single- and double-screw fixation constructs in a cadaveric scaphoid nonunion model demonstrate similar construct stiffness, load to failure, and load to 1- and 2-mm displacement. Modes of failure may differ between constructs and represent an area for further study. The theoretical benefit of dual-screw fixation should be weighed against the morphologic limitations to placing 2 screws in a scaphoid nonunion.

Author(s):  
Duncan S. Van Nest ◽  
Michael Reynolds ◽  
Eugene Warnick ◽  
Matthew Sherman ◽  
Asif M. Ilyas

Abstract Background Headless compression screw fixation with bone grafting has been the mainstay of treatment for scaphoid nonunion for the past several decades. Recently, locked volar plate fixation has gained popularity as a technique for scaphoid fixation, especially for recalcitrant or secondary nonunions. Purpose The purpose of this meta-analysis was to compare union rates and clinical outcomes between locked volar plate fixation and headless compression screw fixation for the treatment of scaphoid nonunions. Methods A literature search was performed for studies documenting treatment outcomes for scaphoid nonunions from 2000 to 2020. Inclusion criteria consisted of (1) average age > 18 years, (2) primary study using screw fixation, plate fixation, or both, with discrete data reported for each procedure, and (3) average follow-up of at least 3 months. Exclusion criteria consisted of studies with incomplete or missing data on union rates. Data from each study was weighted, combined within treatment groups, and compared across treatment groups using a generalized linear model or binomial distribution. Results Following title and full-text review, 23 articles were included for analysis. Preoperatively, patients treated with plate fixation had significantly longer time from injury to surgery and were more likely to have failed prior surgical intervention. There was no significant difference between union rates at 92 and 94% for screw and plate fixation, respectively. However, plate fixation resulted in longer time to union and lower modified Mayo wrist scores. Conclusion Patients treated with locked volar plate fixation were more likely to be used for recalcitrant or secondary nonunions. There was no statistically significant difference in union rates between screw and plate fixation. The results from this meta-analysis support the select use of locked volar plate fixation for scaphoid nonunion, especially recalcitrant nonunions and those that have failed prior surgical repair.


Hand ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 798-804 ◽  
Author(s):  
William J. Warrender ◽  
David E. Ruchelsman ◽  
Michael G. Livesey ◽  
Chaitanya S. Mudgal ◽  
Michael Rivlin

Background: There has been a recent increase in the use of headless compression screws for fixation of metacarpal neck and shaft fractures as they offer several advantages, and minimal complications have been reported. This study aimed to evaluate the clinical complications and their solutions following retrograde intramedullary headless compression screw fixation of metacarpal fractures. We describe complications and the approach to their management. Methods: We performed a multicenter case series through retrospective review of all patients treated with intramedullary headless screw fixation of metacarpal fractures by 3 fellowship-trained hand surgeons. Patient demographics, implant used, type of complication, pre- and postoperative radiographs, operative reports, and sequelae were reviewed for each case. We defined complications as infection, loss of fixation, hardware failure, malrotation, nonunion, malunion, metal allergy, and any repeat surgical intervention. Results: Four complications (2.5%) were identified through the review of 160 total metacarpal fractures. One complication was a nickel allergy, one was a broken screw after repeat trauma, and 2 patients had bent intramedullary screws. Screw removal in 3 patients was simple and without complications or persistent limitations. One bent screw with a refracture was left in place. No serious complications were seen. Conclusion: Intramedullary screw fixation of metacarpal fractures is safe with a low incidence of complications (2.5%) that can be safely and effectively managed.


Hand ◽  
2020 ◽  
pp. 155894472092664
Author(s):  
Lauren Fader ◽  
Luke Robinson ◽  
Michael Voor

Background: Proximal phalanx fractures are common injuries of the hand with multiple treatment options. Intramedullary (IM) screw fixation has become more widely used, and early outcomes are promising. However, biomechanical data regarding this type of fixation are sparse. Methods: Two methods of IM screw fixation of proximal phalanx fractures were tested in cadaver specimens. All specimens were treated with a single antegrade headless compression screw, with half getting the addition of a blocking screw. To test the most common deforming force of flexion-extension, each phalanx was subjected to apex volar 3-point bending using the Materials Testing System test frame. Results: There was no significant difference in the stiffness of 3-point bending with single antegrade screws alone and with a blocking screw (mean, 63.1 vs 52.2 N/mm; P = .27). When comparing smaller with larger specimens, stiffness of the small group was significantly greater than that of the large group when both fixation methods were included (85.3 vs 30.1 N/mm; P < .0002). When comparing stiffness with percent fill of the screw within bone, there was a moderately positive correlation (0.51). Conclusions: Addition of a blocking screw did not increase the stability of the IM screw fixation construct for proximal phalanx fractures. When comparing specimen size, the smaller bones were stiffer under 3-point bending load, regardless of the type of fixation. In addition, those specimens that had a larger longitudinal screw length to bone length ratio were stiffer. These findings provide valuable information as techniques for IM screw fixation of proximal phalanx fractures continue to evolve.


2017 ◽  
Vol 2 (2) ◽  
pp. 2473011416S0001
Author(s):  
David Ruta ◽  
Robert Ellis ◽  
Benjamin Grear ◽  
Susan Ishikawa ◽  
David Richardson ◽  
...  

Category: Sports Introduction/Purpose: There remains controversy over the ideal implant for intramedullary screw fixation of fifth metatarsal Jones fractures. Promising results have separately been reported for both indication-specific partially threaded screws and headless compression screws. The purpose of this study was to compare clinical and radiographic results between Jones fracture patients treated with indication-specific partially threaded screws to variable-pitched headless compression screws. We also evaluated the association of various patient and fracture characteristics with surgical failure. Methods: We performed a retrospective review and comparative analyses of all Jones fractures treated with primary intramedullary screw fixation by 4 foot and ankle fellowship-trained orthopaedic surgeons at a single institution from 1995 through 2015. Exclusion criteria included concomitant foot or ankle procedures and revision surgery. Charts were reviewed for patient and injury characteristics, implant, and postoperative course. Serial radiographs were examined for fracture classification (Torg and anatomic zone) and radiographic union. Primary endpoint was number of surgical failures, defined as delayed union, nonunion, or refracture. Secondary endpoints included time to each of radiographic union, weight bearing, and pain resolution. Data were analyzed using independent T test, one-way ANOVA, chi-square, and correlation analyses with significance defined as p < 0.05. Results: Fifty-nine feet were reviewed with mean age 30 years and follow-up 9.6 months. Forty-seven received a partially threaded screw (PT) and 12 feet a headless compression screw (HC). The PT group had more failures (10/47, 21.3% vs. 1/12, 8.3%; p=0.31) and more weeks to full weight (4.2 vs. 3.3, p=0.06), without significant differences in time to radiographic union or pain resolution. Most failures were delayed unions. Pooled union rate was 96.6%. Correlated with failure were age (r=0.469, p < 0.001), diabetes (r=0.390, p=0.002), and BMI (r=0.281, p=0.03), without significant correlation for tobacco, gender, or weight. Compared to Torg 1 and 2, Torg 3 fractures had greater time to pain resolution and radiographic union, age, weight, and BMI. No differences were found between zone II and III fractures. Conclusion: To our knowledge, this is the first reported clinical comparison between indication-specific partially threaded screws (PT) and headless compression screws (HC) for treating Jones fractures. This is also one of the largest clinical series on the subject. The two groups had similar clinical and radiographic results, both with high union rates. While most failures were delayed unions that ultimately healed, the 21% failure rate in the PT group is concerning and may warrant further investigation. Increasing patient age, diabetes, and BMI were associated with worse outcomes. These data support headless compression screw fixation as a viable treatment for Jones fractures.


2021 ◽  
pp. 175319342110177
Author(s):  
John G. Galbraith ◽  
Lachlan S. Huntington ◽  
Paul Borbas ◽  
David C. Ackland ◽  
Stephen K. Tham ◽  
...  

We compared four methods of metacarpal shaft fixation: 2.2 mm intramedullary headless compression screw; 3.0 mm intramedullary headless compression screw; intramedullary K-wire fixation; and dorsal plate fixation. Transverse mid-diaphyseal fractures were created in 64 metacarpal sawbones and were assigned into four groups. Peak load to failure and stiffness were measured in cantilever bending and torsion. We found that dorsal plating had the highest peak load to failure. However, initial bending stiffness of the 3.0 mm intramedullary headless compression screw was higher than that of the dorsal plates. In torsion testing, dorsal plating had the highest peak torque, but there was no significant difference in torsional stiffness between the plate and intramedullary headless compression screw constructs. We concluded that intramedullary headless compression screw fixation is biomechanically superior to K-wires in cantilever bending and torsion; however, it is less stable than dorsal plating. In our study, the initial stability provided by K-wire fixation was sufficient to cope with expected loads in the early rehabilitation period, whereas dorsal plates and IHCS constructs provided stability far in excess of what is required.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Suavi Aydoğmuş ◽  
Tahir Mutlu Duymuş ◽  
Tolga Keçeci

This study evaluated complications associated with implant depth in headless compression screw treatment of an osteochondral fracture associated with a traumatic patellar dislocation in a 21-year-old woman. Computed tomography and X-rays showed one lateral fracture fragment measuring 25 × 16 mm. Osteosynthesis was performed with two headless compression screws. Five months later, the screws were removed because of patella-femoral implant friction. We recommend that the screw heads be embedded to a depth of at least 3 mm below the cartilage surface. Further clinical studies need to examine the variation in cartilage thickness in the fracture fragment.


2017 ◽  
Vol 22 (01) ◽  
pp. 35-38 ◽  
Author(s):  
Eichi Itadera ◽  
Takahiro Yamazaki

We developed a new internal fixation method for extra-articular fractures at the base of the proximal phalanx using a headless compression screw to achieve rigid fracture fixation through a relatively easy technique. With the metacarpophalangeal joint of the involved finger flexed, a smooth guide-pin is inserted into the intramedullary canal of the proximal phalanx through the metacarpal head and metacarpophalangeal joint. Insertion tunnels are made over the guide-pin using a cannulated drill. Then, a headless cannulated screw is placed into the proximal phalanx. All of five fractures treated by this procedure obtained satisfactory results.


2019 ◽  
Vol 12 (S 01) ◽  
pp. S39-S44
Author(s):  
Michael Okoli ◽  
Kevin Lutsky ◽  
Michael Rivlin ◽  
Brian Katt ◽  
Pedro Beredjiklian

Abstract Introduction The purpose of this study is to determine the radiographic dimensions of the finger metacarpals and to compare these measurements with headless compression screws commonly used for fracture fixation. Materials and Methods We analyzed computed tomography (CT) scans of the index, long, ring, and small metacarpal bones and measured the metacarpal length, distance from the isthmus to the metacarpal head, and intramedullary diameter of the isthmus. Metacarpals with previous fractures or hardware were excluded. We compared these dimensions with the size of several commercially available headless screws used for intramedullary fixation. Results A total of 223 metacarpals from 57 patients were analyzed. The index metacarpal was the longest, averaging 67.6 mm in length. The mean distance from the most distal aspect of the metacarpal head to the isthmus was 40.3, 39.5, 34.4, and 31 mm for the index, long, ring, and small metacarpals, respectively. The narrowest diameter of the isthmus was a mean of 2.6, 2.7, 2.3, and 3 mm for the index, long, ring, and small metacarpals, respectively. Of 33 commercially available screws, only 27% percent reached the isthmus of the index metacarpal followed by 42, 48, and 58% in the long, ring, and small metacarpals, respectively. Conclusion The index and long metacarpals are at a particular risk of screw mismatch given their relatively long lengths and narrow isthmus diameters.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
Heng-Li Huang ◽  
...  

Abstract Background Metacarpal shaft fracture is a common fracture in hand trauma injuries. Surgical intervention is indicated when fractures are unstable or involve considerable displacement. Current fixation options include Kirschner wire, bone plates, and intramedullary headless screws. Common complications include joint stiffness, tendon irritation, implant loosening, and cartilage damage. Objective We propose a modified fixation approach using headless compression screws to treat transverse or short-oblique metacarpal shaft fracture. Materials and methods We used a saw blade to model transverse metacarpal neck fractures in 28 fresh porcine metacarpals, which were then treated with the following four fixation methods: (1) locked plate with five locked bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two Kirschner wires (K group), and (4) a headless compression screw (HC group). In the HC group, we proposed a novel fixation model in which the screw trajectory was oblique to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; thus, the screw did not damage the articular cartilage. The specimens were tested using a modified three-point bending test on a material testing system. The maximum fracture forces and stiffness values of the four fixation types were determined by observing the force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the exact Wilcoxon rank sum test with Bonferroni adjustment was performed to conduct paired comparisons among the groups. Results The maximum fracture forces (median ± interquartile range [IQR]) of the LP, RP, HC, and K groups were 173.0 ± 81.0, 156.0 ± 117.9, 60.4 ± 21.0, and 51.8 ± 60.7 N, respectively. In addition, the stiffness values (median ± IQR) of the LP, HC, RP, and K groups were 29.6 ± 3.0, 23.1 ± 5.2, 22.6 ± 2.8, and 14.7 ± 5.6 N/mm, respectively. Conclusion Headless compression screw fixation provides fixation strength similar to locked and regular plates for the fixation of metacarpal shaft fractures. The headless screw was inserted obliquely to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; therefore the articular cartilage iatrogenic injury can be avoidable. This modified fixation method may prevent tendon irritation and joint cartilage violation caused by plating and intramedullary headless screw fixation.


Author(s):  
Paul Borbas ◽  
Rafael Loucas ◽  
Marios Loucas ◽  
Maximilian Vetter ◽  
Simon Hofstede ◽  
...  

Abstract Introduction Coronal plane fractures of the distal humerus are relatively rare and can be challenging to treat due to their complexity and intra-articular nature. There is no gold standard for surgical management of these complex fractures. The purpose of this study was to compare the biomechanical stability and strength of two different internal fixation techniques for complex coronal plane fractures of the capitellum with posterior comminution. Materials and methods Fourteen fresh frozen, age- and gender-matched cadaveric elbows were 3D-navigated osteotomized simulating a Dubberley type IIB fracture. Specimens were randomized into one of two treatment groups and stabilized with an anterior antiglide plate with additional anteroposterior cannulated headless compression screws (group antiGP + HCS) or a posterolateral distal humerus locking plate with lateral extension (group PLP). Cyclic testing was performed with 75 N over 2000 cycles and ultimately until construct failure. Data were analyzed for displacement, construct stiffness, and ultimate load to failure. Results There was no significant difference in displacement during 2000 cycles (p = 0.291), stiffness (310 vs. 347 N/mm; p = 0.612) or ultimate load to failure (649 ± 351 vs. 887 ± 187 N; p = 0.140) between the two groups. Conclusions Posterolateral distal humerus locking plate achieves equal biomechanical fixation strength as an anterior antiglide plate with additional anteroposterior cannulated headless compression screws for fracture fixation of complex coronal plane fractures of the capitellum. These results support the use of a posterolateral distal humerus locking plate considering the clinical advantages of less invasive surgery and extraarticular metalware. Level of evidence Biomechanical study.


Sign in / Sign up

Export Citation Format

Share Document