scholarly journals Identification of a Single Nucleotide Polymorphism at Hinf-1 Enzyme Restriction Site of Pit-1 Gene on Indonesian Bali Cattle Population

2015 ◽  
Vol 38 (2) ◽  
pp. 104-109 ◽  
Author(s):  
Jakaria Jakaria ◽  
R R Noor
Author(s):  
Bernd Degen ◽  
Celine Blanc-Jolivet ◽  
Svetlana Bakhtina ◽  
Ruslan Ianbaev ◽  
Yulai Yanbaev ◽  
...  

AbstractWe used Double Digest Restriction site associated DNA sequencing (ddRAD) and Miseq to develop new geographically informative nuclear and plastid SNP and indel loci in Quercus robur and Q. petraea. Genotypes derived from sequence data of 95 individuals and two pools of 20 individuals each of Q. robur and Q. mongolica covering the distribution range of the species, were analysed to select geographically informative and polymorphic loci within Germany and Russia. We successfully screened a selected set of 431 nuclear single nucleotide polymorphism (nSNP), six nuclear Indel, six mitochondrial single nucleotide polymorphism (mtSNP) and ten chloroplast single nucleotide polymorphism (cpSNP) loci with a SeqSNP genotyping platform on 100 individuals Quercus petraea from 10 locations in Germany, 100 individuals Quercus robur from ten locations in Germany and 100 individuals Quercus robur from ten locations in Russia. The newly developed loci are useful for species identification and genetic studies on the genetic diversity and genetic differentiation of Quercus robur and Quercus petraea in Europe.


2020 ◽  
Author(s):  
Lirong Hu ◽  
Dong Li ◽  
Qin Chu ◽  
Yachun Wang ◽  
Lei Zhou ◽  
...  

Abstract Background: In China, the widespread crossbreeding between Simmental and Holstein is a universal way so as to better improve the comprehensive benefits, as well as decline the inbreeding coefficient. However, the wrong parentage appeared frequently in this population than others due to not only the reasons in pure breeds, but more importantly, the lack of enough attention, which caused the lower accuracy of genetic parameter estimation and genetic evaluation in breeding systems. Single nucleotide polymorphism (SNP) panel in a certain population as a powerful tool for parentage assignment has been reported in numerous studies, especially in cattle. Therefore, the aim of this study was to build an SNP panel with sufficient power for parentage testing in the crossbred population of Simmental and Holstein in China. Results: In the present study, combining direct sequencing method in polymerase chain reaction (PCR) products of deoxyribonucleic acid (DNA) pooling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) genotyping method in individuals, a panel comprising 50 highly informative single nucleotide polymorphisms (SNPs) for parentage analysis was developed in a crossbred Chinese cattle population. The average minor allele frequency (MAF) was 0.43 and the cumulative exclusion probability for single-parent and both-parent inference met 0.99797 and 0.999999, respectively. The maker-set was then used for parentage verification in a group of 81 trios with the likelihood-based parentage-assignment program of Cervus software. Compared with on-farm records, the results showed that this 50-SNP system could provide sufficient and reliable information for parentage testing with the parental mistakes for mother-offspring and sire-offspring being 8.6% and 18.5%, respectively.Conclusion: Knowledge of these results, we provided one set of low-cost and efficient SNPs for running paternity testing in the crossbred cattle population of Simmental and Holstein in China. Keywords: Parentage analysis, Single nucleotide polymorphism (SNP), Chinese crossbred cattle


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 230
Author(s):  
Zhiming Chen ◽  
Guihua Wang ◽  
Min Li ◽  
Zhengqiang Peng ◽  
Habib Ali ◽  
...  

To determine population genomic structure through high-throughput sequencing techniques has revolutionized research on non-model organisms. The coconut leaf beetle, Brontispa longissima (Gestro), is a widely distributed pest in Southern China. Here, we used restriction site-associated DNA (RAD) genotyping to assess the invasion pathway by detecting and estimating the degree of genetic differentiation among 51 B. longissima accessions collected from Southern China. A total of 10,127 SNPs were obtained, the screened single nucleotide polymorphism (SNP) information was used to construct the phylogenetic tree, FST analysis, principal component analysis, and population structure analysis. Genetic structure analysis was used to infer the population structure; the result showed that all accessions were divided into Hainan population and non-Hainan population. The Hainan population remained stable, only the Sansha population differentiated, and the non-Hainan populations have gradually differentiated into smaller sub-populations. We concluded that there are two sources of invasion of B. longissima into mainland China: Taiwan and Hainan. With the increase of the invasion time, the Hainan population was relatively stable, and the Taiwan population was differentiated into three sub-populations. Based on the unrooted phylogenetic tree, we infer that Taiwan and Hainan are the two invasive base points. The Taiwan population invaded Fujian, Guangdong, and Guangxi, while the Hainan population invaded Yunnan and Sansha. Our results provide strong evidence for the utility of RAD sequencing (RAD-seq) in population genetics studies, and our generated SNP resource could provide a valuable tool for population genomics studies of B. longissima in the future.


2007 ◽  
Vol 85 (2) ◽  
pp. 341-347 ◽  
Author(s):  
M. F. Allan ◽  
R. M. Thallman ◽  
R. A. Cushman ◽  
S. E. Echternkamp ◽  
S. N. White ◽  
...  

2005 ◽  
Vol 60 (7-8) ◽  
pp. 637-643 ◽  
Author(s):  
David López Herráez ◽  
Holger Schäfer ◽  
Jörn Mosner ◽  
Hans-Rudolf Fries ◽  
Michael Wink

Highly informative genetic markers are essential for efficient management of cattle populations, as well as for food safety. After a decade of domination by microsatellite markers, a new type of genetic marker, single nucleotide polymorphism (SNP), has recently appeared on the scene. In the present study, the exclusion power of both kinds of markers with regards to individual identification and parental analysis was directly compared in a Galloway cattle population. Seventeen bovine microsatellites were distributed in three incremental marker sets (10, 14 and 17 microsatellite markers) and used for cattle genotyping. A set of 43 bovine SNP was used for genotyping the same cattle population. The accuracy of both kinds of markers in individual identification was evaluated using probability of identity estimations. These were 2.4 × 10-8 for the 10 microsatellite set, 2.3 × 10-11 for the 14 microsatellite set, and 1.4 × 10-13 for the 17 microsatellite marker set. For the 43 SNP markers, the estimated probability of identity was 5.3 × 10-11. The exclusion power of both kinds of markers in parental analysis was evaluated using paternity exclusion estimations, and, in addition to this, by estimation of the parental exclusion probability in 18 Galloway family trios. Paternity exclusion was estimated to be over 99% for microsatellites, and approx. 98% for SNP. Both, microsatellite and SNP sets of markers showed similar parental exclusion probabilities.


Sign in / Sign up

Export Citation Format

Share Document