scholarly journals Deriving Rules for Forecasting Air Carrier Financial Stress and Insolvency: A Genetic Algorithm Approach

Author(s):  
Sergio Davalos ◽  
Richard Gritta ◽  
Bahram Adrangi

Statistical and artificial intelligence methods have successfully classified organizational solvency, but are limited in terms of generalization, knowledge on how a conclusion was reached, convergence to a local optima, or inconsistent results. Issues such as dimensionality reduction and feature selection can also affect a model's performance. This research explores the use of the genetic algorithm that has the advantages of the artificial neural network but without its limitations. The genetic algorithm model resulted in a set of easy to understand, if-then rules that were used to assess U.S. air carrier solvency with a 94% accuracy.

2013 ◽  
Vol 347-350 ◽  
pp. 3537-3540
Author(s):  
Hai Yun Lin ◽  
Yu Jiao Wang ◽  
Jian Chun Cai

In respect of the classification of current image retrieval technology and the existing issues, the paper put forward a method designed for image semantic feature extraction based on artificial intelligence. The new method has solved the tough problem of image semantic feature extraction, by fusing fuzzy logic, genetic algorithm and artificial neural network altogether, which greatly improved the efficiency and accuracy of image retrieval.


2016 ◽  
Vol 109 ◽  
pp. 305-311 ◽  
Author(s):  
Fábio Coelho Sampaio ◽  
Tamara Lorena da Conceição Saraiva ◽  
Gabriel Dumont de Lima e Silva ◽  
Janaína Teles de Faria ◽  
Cristiano Grijó Pitangui ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5951-5960 ◽  
Author(s):  
Roya Mohammadzadeh Kakhki ◽  
Mojtaba Mohammadpoor ◽  
Reza Faridi ◽  
Mehdi Bahadori

In this research an S-N doped Fe2O3 nanostructure is synthesized and its adsorption ability and photocatalytic activity were evaluated. The optimum experimental conditions were obtained and an ANN-GA model was proposed for predicting experimental values.


Sign in / Sign up

Export Citation Format

Share Document