Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling

Author(s):  
Amir Molajou ◽  
Vahid Nourani ◽  
Abbas Afshar ◽  
Mina Khosravi ◽  
Adam Brysiewicz
SINERGI ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 193
Author(s):  
Ika Sari Damayanthi Sebayang ◽  
Agus Suroso ◽  
Alnis Gustin Laoli

The rainfall-runoff model is required to ascertain the relationship between rainfall and runoff. Hydrologists are often confronted with problems of prediction and estimation of runoff using the rainfall date. In actual fact the relationship of rainfall-runoff is known to be highly non-linear and complex. The spatial and temporal precipitation patterns and the variability of watershed characteristics create a more complex hydrologic phenomenon. Runoff is part of the rain water that enters and flows and enters the river body. Rainfall-runoff modeling in this study using Artificial Neural Network, back propagation method and sigmoid binary activation function. This model is used to simulate single or long-term continuous events, water volume, making it very appropriate for urban areas. Back propagation is an inherited learning algorithm and is commonly used by perceptron with multiple layers to change the weights associated with neurons in the hidden layer. Back propagation algorithm uses output error to change the values of its weight in the backward direction. The location of the review is the Ciujung River Basin (DAS), the data used are rainfall and debit data of Ciujung River from 2011-2017. Based on training and simulation results, obtained R2 value: 2012 = 0,85102; 2013 = 0,78661; 2014 = 0,81188; 2015 = 0,77902; 2016 = 0,7279. on model 2 = 0,8724. On model 3 R2:  January = 0,96937; February = 0,92984; March = 0,90666; April = 0,92566; May = 0,9128; June = 0,87975; July= 0,85292; August = 0,95943; September = 0,88229; October = 0,90537; November = 0,93522; December = 0,9111. with MSE (Mean Squared Error) of 0,0018479. The closer value of MSE to 0 and the value of R2 close to 1 then the better designed artificial neural network. If the data used for training more, the artificial neural network will produce a larger R2 value.


Nativa ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 527
Author(s):  
Aline Bernarda Debastiani ◽  
Sílvio Luís Rafaeli Neto ◽  
Ricardo Dalagnol da Silva

O objetivo deste estudo é investigar o desempenho da árvore modelo (M5P) e sua sensibilidade à poda e comparação com o desempenho de uma Rede Neural Artificial (RNA) para a simulação da vazão média diária mensal. A motivação para esta análise está na maior simplicidade e velocidade de processamento da M5P comparado às RNAs e a carência de estudos aplicando este método na modelagem hidrológica. O estudo foi desenvolvido na bacia hidrográfica do Alto Canoas, tendo um delineamento experimental composto por um período de treinamento, um de validação cruzada e dois períodos de testes. A RNA utilizada foi a Multi Layer Perceptron (MLP), implementada no software MATLAB, e a M5P (com e sem poda), disponível do software WEKA. O algoritmo M5P se mostrou sensível à poda em somente metade dos tratamentos. A M5P apresentou bom ajuste na modelagem, porém a RNA apresentou desempenho superior em todos os tratamentos.Palavras-chave: rede neural artificial; árvore de regressão; Bacia do Alto Canoas. MODEL TREE IN COMPARISON TO ARTIFICIAL NEURAL NETWORK FOR RAINFALL-RUNOFF MODELING ABSTRACT: The aim of this study is to investigate the performance of the model tree (M5P) and its sensitivity to pruning and comparison to the performance of an Artificial Neural network (ANN) for the simulation of daily average discharge of the month. The motivation for this analysis is on simplicity and speed of processing M5P compared the RNAs. The study was developed in the Alto Canoas watershed, having an experiment consisting of a training period, a cross-validation and two testing periods. The ANN used was the Multi Layer Perceptron (MLP), implemented in MATLAB software, and M5P (with and without pruning), available from the WEKA software. M5P algorithm proved sensitive to pruning in half of the treatments. The M5P showed good fit in the modeling, but the RNA presented superior performance in all treatments.Keywords: artificial neural network; regression tree; Basin Alto Canoas.


Sign in / Sign up

Export Citation Format

Share Document