scholarly journals Carrier Frequency Offsets Problem in DCT-SC-FDMA System: Investigation and Compensation

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Faisal S. Al-kamali ◽  
Moawad I. Dessouky ◽  
Bassiouny M. Sallam ◽  
Farid Shawki ◽  
Fathi E. Abd El-Samie

The Single-Carrier Frequency Division Multiple Access (SC-FDMA) system is a well-known system, which has recently become a preferred choice for uplink channels. In this system, the Carrier Frequency Offsets (CFOs) disrupt the orthogonality between subcarriers and give rise to Intercarrier Interference (ICI), and Multiple Access Interference (MAI) among users. In this paper, the impact of the CFOs on the performance of the Discrete Cosine Transform (DCT) SC-FDMA (DCT-SC-FDMA) system is investigated. Then, a new low-complexity joint equalization and CFOs compensation scheme is proposed to cancel the interference in frequency domain. The Minimum Mean Square Error (MMSE) equalizer is utilized in the proposed scheme. A hybrid scheme comprising MMSE equalization, CFOs compensation, and Parallel Interference Cancellation (PIC) is also suggested and investigated for further enhancement of the performance of the DCT-SC-FDMA system with interleaved subcarriers assignment. For simplicity, this scheme will be referred to as the MMSE+PIC scheme. From the obtained simulation results, it is found that the proposed schemes are able to enhance the system performance, even in the presence of the estimation errors.

2012 ◽  
Vol 11 (3) ◽  
pp. 869-873 ◽  
Author(s):  
F. S. Al-Kamali ◽  
M. I. Dessouky ◽  
B. M. Sallam ◽  
F. Shawki ◽  
W. Al-Hanafy ◽  
...  

2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Naif Alsowaidi ◽  
Tawfig Eltaif ◽  
Mohd Ridzuan Mokhtar

AbstractThis paper presents a comprehensive review of successive interference cancellation (SIC) scheme using pulse position modulation (PPM) for optical code division multiple access (OCDMA) systems. SIC scheme focuses on high-intensity signal, which will be selected after all users were detected, and then it will be subtracted from the overall received signal, hence, generating a new received signal. This process continues till all users eliminated one by one have been detected. It is shown that the random location of the sequences due to PPM encoding can reduce the probability of concentrated buildup of the pulse overlap in any one-slot time, and support SIC to easily remove the effect of the strongest signal at each stage of the cancellation process. The system bit error rate (BER) performance with modified quadratic congruence (MQC) codes used as signature sequence has been investigated. A detailed theoretical analysis of proposed system taking into account the impact of imperfect interference cancellation, the loss produced from the splitting during encoding and decoding, the channel loss and multiple access interference is presented. Results show that under average effective power constraint optical CDMA system using SIC scheme with


Sign in / Sign up

Export Citation Format

Share Document