scholarly journals Exergy Assessment of Single Stage Solar Adsorption Refrigeration System Using ANN

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
V. Baiju ◽  
C. Muraleedharan

A new approach based on artificial intelligence is proposed here for the exergy assessment of solar adsorption refrigeration system working with activated carbon-methanol pair. Artificial neural network model is used for the prediction of exergy destruction and exergy efficiency of each component of the system. Pressure, temperature and solar insolation are used as input variables for developing the artificial neural network model. The back propagation algorithm with three different variants such as CGP, SCG and LM are used in the network A and network B. The most suitable algorithm and the number of neurons in hidden layer are found as LM with 9 for network A and SCG with 17 for the Network B. The artificial neural network predicted results are compared with the calculated values of exergy destruction and exergy efficiency. The values of the exergy destruction and exergy efficiency of components (condenser, expansion device, evaporator, adsorbent bed, solar concentrator and overall system) are found to be close to 1. The RMS and COV values are found to be very low in all cases. The comparison of the results suggests that the artificial neural network provided results are within the acceptable range.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3042
Author(s):  
Sheng Jiang ◽  
Mansour Sharafisafa ◽  
Luming Shen

Pre-existing cracks and associated filling materials cause the significant heterogeneity of natural rocks and rock masses. The induced heterogeneity changes the rock properties. This paper targets the gap in the existing literature regarding the adopting of artificial neural network approaches to efficiently and accurately predict the influences of heterogeneity on the strength of 3D-printed rocks at different strain rates. Herein, rock heterogeneity is reflected by different pre-existing crack and filling material configurations, quantitatively defined by the crack number, initial crack orientation with loading axis, crack tip distance, and crack offset distance. The artificial neural network model can be trained, validated, and tested by finite 42 quasi-static and 42 dynamic Brazilian disc experimental tests to establish the relationship between the rock strength and heterogeneous parameters at different strain rates. The artificial neural network architecture, including the hidden layer number and transfer functions, is optimized by the corresponding parametric study. Once trained, the proposed artificial neural network model generates an excellent prediction accuracy for influences of high dimensional heterogeneous parameters and strain rate on rock strength. The sensitivity analysis indicates that strain rate is the most important physical quantity affecting the strength of heterogeneous rock.


Sign in / Sign up

Export Citation Format

Share Document