rock strength
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 136)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Arsalan Mahmoodzadeh ◽  
Mokhtar Mohammadi ◽  
Sirwan Ghafoor Salim ◽  
Hunar Farid Hama Ali ◽  
Hawkar Hashim Ibrahim ◽  
...  

2022 ◽  
Author(s):  
Wenjie Liu ◽  
Ke Yang ◽  
Litong Dou ◽  
Zhen Wei ◽  
Xiaolou Chi ◽  
...  

Abstract To explore the dynamic mechanical characteristics of coal-rock combined body (CRCB) load-bearing structures, impact tests were performed on CRCB specimens by using a separated Hopkinson pressure bar test device (SHPB) combined with an ultra-high-speed camera system. The propagation characteristics of stress wave , dynamic stress-strain relationship, energy evolution law, and distribution characteristics of CRCB crushed particles in the impact tests were analyzed. The obtained results showed that: with the increasing of impact velocity, the effect of the wave impedance difference between the CRCB specimens and incident bar on stress wave propagation is gradually weakened. The peak strength (sII) and peak strain of the CRCB had obvious strain-rate effects, the ratio of reflected energy decreases linearly. In addition, with increased impact velocity, the growth rate of the peak strength and ratio of absorbed energy gradually dropped, changing approximately as a power function. Macro-fractures of the CRCB mainly occurred at the coal or rock ends which is far away from the interface. When the stress at the crack tip is greater than the "weakened" coal or rock strength, the crack will continue to develop across the coal and rock interface. With the increasing of impact velocity and rock strength, the crushed coal particles gradually transform from massive to powdering, and the average size of crushed coal blocks decreases, which leads to a gradual increase in the fractal dimension of the CRCB specimens. Therefore, the monitoring and prevention of dynamic loads should be strengthened in the coal mines with thick and hard roofs.


2021 ◽  
Author(s):  
Khaqan Khan ◽  
Mohammad Altwaijri ◽  
Sajjad Ahmed

Abstract Drilling oil and gas wells with stable and good quality wellbores is essential to minimize drilling difficulties, acquire reliable openhole logs data, run completions and ensure well integrity during stimulation. Stress-induced compressive rock failure leading to enlarged wellbore is a common form of wellbore instability especially in tectonic stress regime. For a particular well trajectory, wellbore stability is generally considered a result of an interplay between drilling mud density (i.e., mud weight) and subsurface geomechanical parameters including in-situ earth stresses, formation pore pressure and rock strength properties. While role of mud system and chemistry can also be important for water sensitive formations, mud weight is always a fundamental component of wellbore stability analysis. Hence, when a wellbore is unstable (over-gauge), it is believed that effective mud support was insufficient to counter stress concentration around wellbore wall. Therefore, increasing mud weight based on model validation and calibration using offset wells data is a common approach to keep wellbore stable. However, a limited number of research articles show that wellbore stability is a more complex phenomenon affected not only by geomechanics but also strongly influenced by downhole forces exerted by drillstring vibrations and high mud flow rates. Authors of this paper also observed that some wells drilled with higher mud weight exhibit more unstable wellbore in comparison with offset wells which contradicts the conventional approach of linking wellbore stability to stresses and rock strength properties alone. Therefore, the objective of this paper is to analyze wellbore stability considering both geomechanical and drilling parameters to explain observed anomalous wellbore enlargements in two vertical wells drilled in the same field and reservoir. The analysis showed that the well drilled with 18% higher mud weight compared with its offset well and yet showing more unstable wellbore was, in fact, drilled with more aggressive drilling parameters. The aggressive drilling parameters induce additional mechanical disturbance to the wellbore wall causing more severe wellbore enlargements. We devised a new approach of wellbore stability management using two-pronged strategy. It focuses on designing an optimum weight design using geomechanics to address stress-induced wellbore failure together with specifying safe limits of drilling parameters to minimize wellbore damage due to excessive downhole drillstring vibrations. The findings helped achieve more stable wellbore in subsequent wells with hole condition meeting logging and completion requirements as well as avoiding drilling problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guoyu Yang ◽  
Tao Shang ◽  
Liu Han ◽  
Tao Chen

To study the influence of profile shape on the stability of nonhomogeneous slopes, strip mechanical models of slopes with different profile shapes were established following the simplified Bishop method. Three hundred and seventy slope models with different profile shapes and strata sequences were simulated and analyzed with FLAC3D. The results show that slopes with weaker-to-stronger (WtS) strata sequences are, in most cases, more stable than slopes with stronger-to-weaker (StW) strata sequences when all other conditions are the same. Slopes with linear shapes are the most stable. With increasing arch height, the stability of convex slopes decreases, and the stability of concave slopes first increases slightly and then decreases. When the strata sequences are WtS, the factors of safety (FoSs) of slopes with convex and exterior polyline shapes decrease more slowly. However, when the strata sequences are StW, the FoSs of slopes with concave and interior polyline shapes decrease more slowly. The greatest X-displacements are concentrated in the steeper areas of the slopes. For different strata sequences, the higher the rock strength at the steeper position is, the more stable the slope is, and the opposite trend is also observed. For the same strata sequence, the stability of a polyline-shaped slope is always better than that of a curved slope with the same inflection point.


2021 ◽  
Vol 10 ◽  
pp. 40-46
Author(s):  
Văn Hùng Nguyễn ◽  
Thị Thuỳ Linh Bùi

Sand production is a key issue when selecting and applying completion solutions like open holes, screens or perforated liners. This problem can be seen in several types of reservoirs such as weakly consolidated and non-consolidated carbonates. The paper presents a method to model wellbore failures for sanding prediction. Our study shows that the potential sand risk in this field is defined by the rock strength rather than the in-situ stress. If the rock is sufficiently competent, the potential of sand production is negligible, and the development wells can be completed conventionally without any downhole sand control for the reservoir pressure above 1,280 psi and the maximum drawdown pressure of 2,380 psi.


2021 ◽  
Vol 54 (2D) ◽  
pp. 125-137
Author(s):  
Mustafa Adil Issa

Mechanical rock properties are essential to minimize many well problems during drilling and production operations. While these properties are crucial in designing optimum mud weights during drilling operations, they are also necessary to reduce the sanding risk during production operations. This study has been conducted on the Zubair sandstone reservoir, located in the south of Iraq. The primary purpose of this study is to develop a set of empirical correlations that can be used to estimate the mechanical rock properties of sandstone reservoirs. The correlations are established using laboratory (static) measurements and well logging (dynamic) data. The results support the evidence that porosity and sonic travel time are consistent indexes in determining the mechanical rock properties. Four correlations have been developed in this study which are static Young’s modulus, uniaxial compressive strength, internal friction angle, and static Poisson’s ratio with high performance capacity (determination coefficient of 0.79, 0.91, 0.73, and 0.78, respectively). Compared with previous correlations, the current local correlations are well-matched in determining the actual rock mechanical properties. Continuous profiles of borehole-rock mechanical properties of the upper sand unit are then constructed to predict the sand production risk. The ratio of shear modulus to bulk compressibility (G/Cb) as well as rock strength are being used as the threshold criterion to determine the sanding risks. The results showed that sanding risk or rock failure occurs when the rock strength is less than 7250 psi (50 MPa) and the ratio of G/Cb is less than 0.8*1012 psi2. This study presents a set of empirical correlations which are fewer effective costs for applications related to reservoir geomechanics.


Author(s):  
María Elvira Garrido ◽  
Ferry B. Petnga ◽  
Víctor Martínez-Ibáñez ◽  
José B. Serón ◽  
Carlos Hidalgo-Signes ◽  
...  

AbstractThe effect of exposure to high temperature on rock strength is a topic of interest in many engineering fields. In general, rock strength is known to decrease as temperature increases. The most common test used to evaluate the rock strength is the uniaxial compressive strength test (UCS). It can only be carried out in laboratory and presents some limitations in terms of the number, type and preparation of the samples. Such constrains are more evident in case of rocks from historical monuments affected by a fire, where the availability of samples is limited. There are alternatives for an indirect determination of UCS, such as the point load test (PLT), or non-destructive tests such as the Schmidt’s hammer, that can also be performed in situ. The aims of this research are: (i) measuring the effect of high temperatures and cooling methods on the strength and hardness of a limestone named Pedra de Borriol widely used in several historic buildings on the E of Spain, and (ii) studying the possibility of indirectly obtaining UCS by means of PLT and Leeb hardness tests (LHT), using Equotip type D. Limestone samples were heated to 105 (standard conditions), 200, 300, 400, 500, 600, 700, 800 and 900 ºC and cooled slowly (in air) and quickly (immersed in water). After that, UCS, PLT and LHT tests were performed to evaluate the changes as temperature increases. Results show decreases over 90% in UCS, of between 50 and 70% in PLT index and smaller than 60% in LHT index. Insignificant differences between cooling methods were observed, although slowly cooled samples provide slightly higher values than quickly cooled ones. The results indicate that LHT can be used to indirectly estimate UCS, providing an acceptable prediction. Research on correlating strength parameters in rocks after thermally treated is still scarce. This research novelty provides correlations to predict UCS in historic buildings if affected by a fire, from PLT and non-destructive methods such as LHT whose determination is quicker and easier.


Sign in / Sign up

Export Citation Format

Share Document