scholarly journals Neutrosophic Soft Bitopological Spaces

Author(s):  
Ahmed B. AL-Nafee ◽  
◽  
Said Broumi ◽  
Florentin Smarandache ◽  
◽  
...  

In this paper, we built bitopological space on the concept of neutrosophic soft set, we defined the basic topological concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)* neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior and we introduced their properties. In addition, we investigated the relations of these basic topological concepts with their counterparts in neutrosophic soft topological spaces and we introduced many examples.

Author(s):  
K. Vithyasangaran ◽  
P. Elango ◽  
S. Sathaananthan ◽  
J. Sriranganesan ◽  
P. Paramadevan

In this paper, we introduced and studied a new kind of generalized open set called τ1τ2-g-open set in a bitopological space (X, τ1, τ2). The properties of this τ1τ2-g-open set are studied and compared with some of the corresponding generalized open sets in general topological spaces and bitopological spaces. We also dened the τ1τ2-g-continuous function and studied some its properties.


1972 ◽  
Vol 15 (1) ◽  
pp. 109-113 ◽  
Author(s):  
G. D. Richardson

The R1 axiom was first introduced by Davis in [1]. It is strictly weaker than the T2 axiom. Murdeshwar and Naimpally, in [4], have weakened the T2 hypothesis to R1 in some well-known theorems. We show that in many topological spaces the R1 axiom and regularity are equivalent. Also, the definition of local compactness given in [4] can be weakened to the usual definition and still get the same results.The notion of a bitopological space was first introduced by Kelley in [3]. Fletcher, Hoyle, and Patty discuss pairwise compactness for bitopological spaces in [2]. One of our main results is that a bitopological space (X, P, Q) is pairwise compact if and only if each ultrafilter v on X, containing a proper P closed set and a proper Q closed set, has a common P and Q limit.


Author(s):  
M. Arunmaran ◽  
K. Kannan

In this paper, we introduce the concept “Quotient bi-space” in bitopological spaces. In addition, we investigate the results related with quotient bi-space. Moreover, we have discussed the results related with pairwise regular and normal spaces in bitopological space. For a non-empty set X, we can define two topologies (these may be same or distinct topologies) τ1 and τ2 on X. Then, the triple (X, τ1 , τ2 ) is known as bitopological space. Let (X, τ1 , τ2 ) be bitopological space, (Y, σ1 , σ2 ) be trivial bitopological space and f : (X, τ1 , τ2 ) → (Y, σ1 , σ2 ) be onto map. Then f is τ1 τ2 −continuous map. If η = {G (σ − open set in Y ) : f ^{−1} (G) is τ1 τ2 − open in X} then η is a topology on Y . Moreover, if (Y, σ, σ) be a quotient bi-space of (X, τ1 , τ2) under f : (X, τ1 , τ2 ) → (Y, σ, σ) and g : (Y, σ, σ) → (Z, η1 , η2 ) be a map, then, gis σ − continuous if and only if g ◦ f : (X, τ1 , τ2 ) → (Z, η1 , η2 ) is τ1 τ2 −continuous. Let (X, τ1 , τ2) be bitopological space and A be τ1 τ2 − compact subset of pairwise Hausdorff space X. Then, A is τ1 τ2 − closed set. Finally, we have discussed the following : Let (X, τ1 , τ2 ) be bitopological space and τ1 τ2 −compact pairwise Hausdorff space. Then, the space (X, τ1 , τ2 ) is pairwise normal.


2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


Author(s):  
Hasan Dadas ◽  
◽  
Sibel Demiralp ◽  

In this study, the concept of neutrosophic soft bitopological space is defined and it is one of the few studies that have dealt with this concept. In addition, pairwise neutrosophic soft open (closed) set on neutrosophic soft bitopological spaces are studied. Supra neutrosophic soft topology is defined by pairwise neutrosophic soft open sets. Important theorems related to the subject supported with many examples for a better understanding of the subject are given.


2016 ◽  
Vol 7 (3) ◽  
pp. 145
Author(s):  
N. Durga Devia ◽  
Raja Rajeswari ◽  
P. Thangavelu

The aim of this paper is to study how distinct points and a point and a closed set not containing that points are separated by non overlapping open neighborhoods, in a bitopological space. The separation is studied with respect to a new type of \((1,2)\alpha\)-open set together with a continuous function. We named the new axioms as star-ultra \(T_{1}\), star-ultra \(T_{2}\), star-ultra regular and normal. The star-ultra regular spaces is studied in two different ways and are called as A-star-ultra regular and B-star-ultra regular spaces.


2016 ◽  
Vol 7 (3) ◽  
pp. 152
Author(s):  
Fahad Alsharari ◽  
Abdo Qahis

In this paper, we introduce the notion of an \((i,j)\)-\(\mathcal{N}\)-\(\beta\)-open set which is a generalization of an \((i,j)\)-\(\beta\)-open set in a bitopological space. Also, we investigate some of its properties and characterizations. Besides, we prove that a pairwise \((i, j)\)-\(\mathcal{N}\)-\(\beta\)-open cover that has a finite (countable) subcover is equivalent to a pairwise \(\beta\)-compact (\(\beta\)-Lindel\"{ö}f) space. Finally, we introduce an \((i, j)\)-\(\mathcal{N}\)-\(\beta\)-continuous function and an \((i, j)\)-\(\mathcal{N}\)-\(\beta\)-irresolute function and obtain some of their properties.


1972 ◽  
Vol 13 (3) ◽  
pp. 327-334 ◽  
Author(s):  
M. C. Datta

J. C. Kelly [2] introduced the concept of a bitopological space. Lane [3], Patty [4] and Pervin [5] have continued his work. Our purpose in this paper is to identify the projective objects in a suitable category of bitopological spaces after the manner of Gleason [1] and generalize his theorem that in the category of compact Hausdoriff topological spaces, the projective spaces are precisely the extremally disconnected ones.


Author(s):  
Vijayakumari T Et.al

In this paper pgrw-locally closed set, pgrw-locally closed*-set and pgrw-locally closed**-set are introduced. A subset A of a topological space (X,t) is called pgrw-locally closed (pgrw-lc) if A=GÇF where G is a pgrw-open set and F is a pgrw-closed set in (X,t). A subset A of a topological space (X,t) is a pgrw-lc* set if there exist a pgrw-open set G and a closed set F in X such that A= GÇF. A subset A of a topological space (X,t) is a pgrw-lc**-set if there exists an open set G and a pgrw-closed set F such that A=GÇF. The results regarding pgrw-locally closed sets, pgrw-locally closed* sets, pgrw-locally closed** sets, pgrw-lc-continuous maps and pgrw-lc-irresolute maps and some of the properties of these sets and their relation with other lc-sets are established.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
M. Arunmaran ◽  
K. Kannan

We are going to establish some results of τ1τ2-δ semiconnectedness and compactness in a bitopological space. Besides, we will investigate several results in τ1τ2-δ semiconnectedness for subsets in bitopological spaces. In particular, we will discuss the relationship related to semiconnectedness between the topological spaces and bitopological space. That is, if a bitopological space (X,τ1,τ2) is τ1τ2-δ semiconnected, then the topological spaces (X,τ1) and (X,τ2) are δ-semiconnected. In addition, we introduce the result which states that a bitopological space (X,τ1,τ2) is τ1τ2-δ semiconnected if and only if X and ϕ are the only subsets of X which are τ1τ2-δ semiclopen sets. Moreover, we have proved some results in compactness also. Altogether, several results of τ1τ2-δ semiconnectedness and compactness in a bitopological space have been discussed.


Sign in / Sign up

Export Citation Format

Share Document