A Study of Internet of Medical Things (IoMT) Used in Pandemic Covid-19 For Healthcare Monitoring Services

2021 ◽  
pp. PP. 5-12
Author(s):  
admin admin ◽  
◽  
◽  
◽  
◽  
...  

Before Internet of things, visit or meet a doctor is based on the appointments, by tele and text communication and also interaction with patient and doctors are limited. IoMT enables medical devices remote monitoring, unleash the possibility for patients to keep safe and healthy, also made easy for physicians to deliver excellent care for patients. The capability of IoT or IoMT in infectious disease control a network of interconnected systems and Artificial intelligence, Data analytics and using omnipresent connectivity in all these networks based upon real time data can help to provide an early warning system to restraint the spread of Pandemic like situation (Covid-19 corona virus, Ebola virus, Hanta Virus etc.) and it also help in healthcare monitoring and treatment services.

Author(s):  
Huijun Wu ◽  
Xiaoyao Qian ◽  
Aleks Shulman ◽  
Kanishk Karanawat ◽  
Tushar Singh ◽  
...  

2021 ◽  
Author(s):  
Ryan Daher ◽  
Nesma Aldash

Abstract With the global push towards Industry 4.0, a number of leading companies and organizations have invested heavily in Industrial Internet of Things (IIOT's) and acquired a massive amount of data. But data without proper analysis that converts it into actionable insights is just more information. With the advancement of Data analytics, machine learning, artificial intelligence, numerous methods can be used to better extract value out of the amassed data from various IIOTs and leverage the analysis to better make decisions impacting efficiency, productivity, optimization and safety. This paper focuses on two case studies- one from upstream and one from downstream using RTLS (Real Time Location Services). Two types of challenges were present: the first one being the identification of the location of all personnel on site in case of emergency and ensuring that all have mustered in a timely fashion hence reducing the time to muster and lessening the risks of Leaving someone behind. The second challenge being the identification of personnel and various contractors, the time they entered in productive or nonproductive areas and time it took to complete various tasks within their crafts while on the job hence accounting for efficiency, productivity and cost reduction. In both case studies, advanced analytics were used, and data collection issues were encountered highlighting the need for further and seamless integration between data, analytics and intelligence is needed. Achievements from both cases were visible increase in productivity and efficiency along with the heightened safety awareness hence lowering the overall risk and liability of the operation. Novel/Additive Information: The results presented from both studies have highlighted other potential applications of the IIOT and its related analytics. Pertinent to COVID-19, new application of such approach was tested in contact tracing identifying workers who could have tested positive and tracing back to personnel that have been in close proximity and contact therefore reducing the spread of COVID. Other application of the IIOT and its related analytics has also been tested in crane, forklift and heavy machinery proximity alert reducing the risk of accidents.


2019 ◽  
pp. 245-256
Author(s):  
Chiranji Lal Chowdhary ◽  
Rachit Bhalla ◽  
Esha Kumar ◽  
Gurpreet Singh ◽  
K. Bhagyashree ◽  
...  

2021 ◽  
Author(s):  
Kay Debby Mann ◽  
Norm Good ◽  
Farhad Fatehi ◽  
Sankalp Khanna ◽  
Victoria Campbell ◽  
...  

BACKGROUND Early warning tools identify patients at risk of deterioration in hospitals. Electronic medical records in hospitals offer real-time data, and the opportunity to automate early warning tools and provide real-time, dynamic risk estimates. OBJECTIVE This review describes published studies on the development, validation and implementation of tools for prediction of patient deterioration in hospital general wards. METHODS An electronic database search of peer-reviewed journal papers 2008-2020 identified studies reporting the use of tools and algorithms for predicting patient deterioration - defined by unplanned transfer to intensive care unit (ICU), cardiac arrest, or death. Studies conducted solely in ICUs, emergency departments or on single diagnosis patient groups were excluded. RESULTS Forty-five publications, eligible for inclusion, were heterogeneous in design, setting and outcome measures. Most papers were retrospective studies utilizing cohort data to develop, validate or statistically evaluate prediction tools. Tools consisted of early warning, screening or scoring systems based on physiologic data, as well as more complex algorithms developed to better represent real-time, deal with complexities of longitudinal data and warn of deterioration risk earlier. Only a few studies detailed the results of implementation of the deterioration warning tools. CONCLUSIONS Despite relative progress on the development of algorithms to predict patient deterioration, the literature has not shown that the deployment or implementation of such algorithms is reproducibly associated with improvement of patient outcomes. Further work is needed to realise the potential of automated predictions and updating dynamic risk estimates as part of an operational early warning system for inpatient deterioration.


2021 ◽  
Author(s):  
Rodrigo Chamusca Machado ◽  
Fabbio Leite ◽  
Cristiano Xavier ◽  
Alberto Albuquerque ◽  
Samuel Lima ◽  
...  

Objectives/Scope This paper presents how a brazilian Drilling Contractor and a startup built a partnership to optimize the maintenance window of subsea blowout preventers (BOPs) using condition-based maintenance (CBM). It showcases examples of insights about the operational conditions of its components, which were obtained by applying machine learning techniques in real time and historic, structured or unstructured, data. Methods, Procedures, Process From unstructured and structured historical data, which are generated daily from BOP operations, a knowledge bank was built and used to develop normal functioning models. This has been possible even without real-time data, as it has been tested with large sets of operational data collected from event log text files. Software retrieves the data from Event Loggers and creates structured database, comprising analog variables, warnings, alarms and system information. Using machine learning algorithms, the historical data is then used to develop normal behavior modeling for the target components. Thereby, it is possible to use the event logger or real time data to identify abnormal operation moments and detect failure patterns. Critical situations are immediately transmitted to the RTOC (Real-time Operations Center) and management team, while less critical alerts are recorded in the system for further investigation. Results, Observations, Conclusions During the implementation period, Drilling Contractor was able to identify a BOP failure using the detection algorithms and used 100% of the information generated by the system and reports to efficiently plan for equipment maintenance. The system has also been intensively used for incident investigation, helping to identify root causes through data analytics and retro-feeding the machine learning algorithms for future automated failure predictions. This development is expected to significantly reduce the risk of BOP retrieval during the operation for corrective maintenance, increased staff efficiency in maintenance activities, reducing the risk of downtime and improving the scope of maintenance during operational windows, and finally reduction in the cost of spare parts replacementduring maintenance without impact on operational safety. Novel/Additive Information For the near future, the plan is to integrate the system with the Computerized Maintenance Management System (CMMS), checking for historical maintenance, overdue maintenance, certifications, at the same place and time that we are getting real-time operational data and insights. Using real-time data as input, we expect to expand the failure prediction application for other BOP parts (such as regulators, shuttle valves, SPMs (Submounted Plate valves), etc) and increase the applicability for other critical equipment on the rig.


Author(s):  
Joseph Bamidele Awotunde ◽  
Rasheed Gbenga Jimoh ◽  
Roseline Oluwaseun Ogundokun ◽  
Sanjay Misra ◽  
Oluwakemi Christiana Abikoye

Sign in / Sign up

Export Citation Format

Share Document