IIOT and Real Time Data Analytics - Maximizing the Impact on Safety and Productivity

2021 ◽  
Author(s):  
Ryan Daher ◽  
Nesma Aldash

Abstract With the global push towards Industry 4.0, a number of leading companies and organizations have invested heavily in Industrial Internet of Things (IIOT's) and acquired a massive amount of data. But data without proper analysis that converts it into actionable insights is just more information. With the advancement of Data analytics, machine learning, artificial intelligence, numerous methods can be used to better extract value out of the amassed data from various IIOTs and leverage the analysis to better make decisions impacting efficiency, productivity, optimization and safety. This paper focuses on two case studies- one from upstream and one from downstream using RTLS (Real Time Location Services). Two types of challenges were present: the first one being the identification of the location of all personnel on site in case of emergency and ensuring that all have mustered in a timely fashion hence reducing the time to muster and lessening the risks of Leaving someone behind. The second challenge being the identification of personnel and various contractors, the time they entered in productive or nonproductive areas and time it took to complete various tasks within their crafts while on the job hence accounting for efficiency, productivity and cost reduction. In both case studies, advanced analytics were used, and data collection issues were encountered highlighting the need for further and seamless integration between data, analytics and intelligence is needed. Achievements from both cases were visible increase in productivity and efficiency along with the heightened safety awareness hence lowering the overall risk and liability of the operation. Novel/Additive Information: The results presented from both studies have highlighted other potential applications of the IIOT and its related analytics. Pertinent to COVID-19, new application of such approach was tested in contact tracing identifying workers who could have tested positive and tracing back to personnel that have been in close proximity and contact therefore reducing the spread of COVID. Other application of the IIOT and its related analytics has also been tested in crane, forklift and heavy machinery proximity alert reducing the risk of accidents.

Author(s):  
Christy Coghlan ◽  
Sina Dabiri ◽  
Brian Mayer ◽  
Mitch Wagner ◽  
Eric Williamson ◽  
...  

The Washington Metropolitan Area Transit Authority (WMATA) operates 1,250 buses on 168 different routes between 10,600 bus stops to support around 370,000 passengers each day. Utilizing sensors on vehicles and analyzing their location and movements throughout an hour, trip, or day can provide valuable information to a transit authority as well as to the users of a transit system. This amount of information can be overwhelming, but utilizing big data techniques can empower the data and the transit agency. First, this paper develops a methodology for assessing previous delays in the system by applying big data structure and statistical analysis to the data constantly collected by WMATA buses. This method of analysis also helps quantify the impact of potential transit system improvements. Second, the paper describes a model that uses the real-time data, that represents potential delays, to provide future passengers with more accurate arrival predictions despite delays. These analyses are powerful tools for agencies and planners to assess and improve transit service performance using big data analytics and real-time predictions.


Author(s):  
Yu-Hsiang Wu ◽  
Jingjing Xu ◽  
Elizabeth Stangl ◽  
Shareka Pentony ◽  
Dhruv Vyas ◽  
...  

Abstract Background Ecological momentary assessment (EMA) often requires respondents to complete surveys in the moment to report real-time experiences. Because EMA may seem disruptive or intrusive, respondents may not complete surveys as directed in certain circumstances. Purpose This article aims to determine the effect of environmental characteristics on the likelihood of instances where respondents do not complete EMA surveys (referred to as survey incompletion), and to estimate the impact of survey incompletion on EMA self-report data. Research Design An observational study. Study Sample Ten adults hearing aid (HA) users. Data Collection and Analysis Experienced, bilateral HA users were recruited and fit with study HAs. The study HAs were equipped with real-time data loggers, an algorithm that logged the data generated by HAs (e.g., overall sound level, environment classification, and feature status including microphone mode and amount of gain reduction). The study HAs were also connected via Bluetooth to a smartphone app, which collected the real-time data logging data as well as presented the participants with EMA surveys about their listening environments and experiences. The participants were sent out to wear the HAs and complete surveys for 1 week. Real-time data logging was triggered when participants completed surveys and when participants ignored or snoozed surveys. Data logging data were used to estimate the effect of environmental characteristics on the likelihood of survey incompletion, and to predict participants' responses to survey questions in the instances of survey incompletion. Results Across the 10 participants, 715 surveys were completed and survey incompletion occurred 228 times. Mixed effects logistic regression models indicated that survey incompletion was more likely to happen in the environments that were less quiet and contained more speech, noise, and machine sounds, and in the environments wherein directional microphones and noise reduction algorithms were enabled. The results of survey response prediction further indicated that the participants could have reported more challenging environments and more listening difficulty in the instances of survey incompletion. However, the difference in the distribution of survey responses between the observed responses and the combined observed and predicted responses was small. Conclusion The present study indicates that EMA survey incompletion occurs systematically. Although survey incompletion could bias EMA self-report data, the impact is likely to be small.


Author(s):  
Sara M.T. Polo

AbstractThis article examines the impact and repercussions of the COVID-19 pandemic on patterns of armed conflict around the world. It argues that there are two main ways in which the pandemic is likely to fuel, rather than mitigate, conflict and engender further violence in conflict-prone countries: (1) the exacerbating effect of COVID-19 on the underlying root causes of conflict and (2) the exploitation of the crisis by governments and non-state actors who have used the coronavirus to gain political advantage and territorial control. The article uses data collected in real-time by the Armed Conflict Location & Event Data Project (ACLED) and the Johns Hopkins University to illustrate the unfolding and spatial distribution of conflict events before and during the pandemic and combine this with three brief case studies of Afghanistan, Nigeria, and Libya. Descriptive evidence shows how levels of violence have remained unabated or even escalated during the first five months of the pandemic and how COVID-19-related social unrest has spread beyond conflict-affected countries.


Author(s):  
Huijun Wu ◽  
Xiaoyao Qian ◽  
Aleks Shulman ◽  
Kanishk Karanawat ◽  
Tushar Singh ◽  
...  

2018 ◽  
Vol 09 (04) ◽  
pp. 841-848
Author(s):  
Kevin King ◽  
John Quarles ◽  
Vaishnavi Ravi ◽  
Tanvir Chowdhury ◽  
Donia Friday ◽  
...  

Background Through the Health Information Technology for Economic and Clinical Health Act of 2009, the federal government invested $26 billion in electronic health records (EHRs) to improve physician performance and patient safety; however, these systems have not met expectations. One of the cited issues with EHRs is the human–computer interaction, as exhibited by the excessive number of interactions with the interface, which reduces clinician efficiency. In contrast, real-time location systems (RTLS)—technologies that can track the location of people and objects—have been shown to increase clinician efficiency. RTLS can improve patient flow in part through the optimization of patient verification activities. However, the data collected by RTLS have not been effectively applied to optimize interaction with EHR systems. Objectives We conducted a pilot study with the intention of improving the human–computer interaction of EHR systems by incorporating a RTLS. The aim of this study is to determine the impact of RTLS on process metrics (i.e., provider time, number of rooms searched to find a patient, and the number of interactions with the computer interface), and the outcome metric of patient identification accuracy Methods A pilot study was conducted in a simulated emergency department using a locally developed camera-based RTLS-equipped EHR that detected the proximity of subjects to simulated patients and displayed patient information when subjects entered the exam rooms. Ten volunteers participated in 10 patient encounters with the RTLS activated (RTLS-A) and then deactivated (RTLS-D). Each volunteer was monitored and actions recorded by trained observers. We sought a 50% improvement in time to locate patients, number of rooms searched to locate patients, and the number of mouse clicks necessary to perform those tasks. Results The time required to locate patients (RTLS-A = 11.9 ± 2.0 seconds vs. RTLS-D = 36.0 ± 5.7 seconds, p < 0.001), rooms searched to find patient (RTLS-A = 1.0 ± 1.06 vs. RTLS-D = 3.8 ± 0.5, p < 0.001), and number of clicks to access patient data (RTLS-A = 1.0 ± 0.06 vs. RTLS-D = 4.1 ± 0.13, p < 0.001) were significantly reduced with RTLS-A relative to RTLS-D. There was no significant difference between RTLS-A and RTLS-D for patient identification accuracy. Conclusion This pilot demonstrated in simulation that an EHR equipped with real-time location services improved performance in locating patients and reduced error compared with an EHR without RTLS. Furthermore, RTLS decreased the number of mouse clicks required to access information. This study suggests EHRs equipped with real-time location services that automates patient location and other repetitive tasks may improve physician efficiency, and ultimately, patient safety.


2019 ◽  
pp. 245-256
Author(s):  
Chiranji Lal Chowdhary ◽  
Rachit Bhalla ◽  
Esha Kumar ◽  
Gurpreet Singh ◽  
K. Bhagyashree ◽  
...  

2021 ◽  
Author(s):  
Meor M. Meor Hashim ◽  
M. Hazwan Yusoff ◽  
M. Faris Arriffin ◽  
Azlan Mohamad ◽  
Tengku Ezharuddin Tengku Bidin ◽  
...  

Abstract The restriction or inability of the drill string to reciprocate or rotate while in the borehole is commonly known as a stuck pipe. This event is typically accompanied by constraints in drilling fluid flow, except for differential sticking. The stuck pipe can manifest based on three different mechanisms, i.e. pack-off, differential sticking, and wellbore geometry. Despite its infrequent occurrence, non-productive time (NPT) events have a massive cost impact. Nevertheless, stuck pipe incidents can be evaded with proper identification of its unique symptoms which allows an early intervention and remediation action. Over the decades, multiple analytical studies have been attempted to predict stuck pipe occurrences. The latest venture into this drilling operational challenge now utilizes Machine Learning (ML) algorithms in forecasting stuck pipe risk. An ML solution namely, Wells Augmented Stuck Pipe Indicator (WASP), is developed to tackle this specific challenge. The solution leverages on real-time drilling database and supplementary engineering design information to estimate proxy drilling parameters which provide active and impartial pattern recognition of prospective stuck pipe events. The solution is built to assist Wells Real Time Centre (WRTC) personnel in proactively providing a holistic perspective in anticipating potential anomalies and recommending remedial countermeasures before incidents happen. Several case studies are outlined to exhibit the impact of WASP in real-time drilling operation monitoring and intervention where WASP is capable to identify stuck pipe symptoms a few hours earlier and provide warnings for stuck pipe avoidance. The presented case studies were run on various live wells where restrictions are predicted stands ahead of the incidents. Warnings and alarms were generated, allowing further analysis by the personnel to verify and assess the situation before delivering a precautionary procedure to the rig site. The implementation of the WASP will reduce analysis time and provide timely prescriptive action in the proactive real-time drilling operation monitoring and intervention hub, subsequently creating value through cost containment and operational efficiency.


Author(s):  
Yasmina Maizi ◽  
Ygal Bendavid

With the fast development of IoT technologies and the potential of real-time data gathering, allowing decision makers to take advantage of real-time visibility on their processes, the rise of Digital Twins (DT) has attracted several research interests. DT are among the highest technological trends for the near future and their evolution is expected to transform the face of several industries and applications and opens the door to a huge number of possibilities. However, DT concept application remains at a cradle stage and it is mainly restricted to the manufacturing sector. In fact, its true potential will be revealed in many other sectors. In this research paper, we aim to propose a DT prototype for instore daily operations management and test its impact on daily operations management performances. More specifically, for this specific research work, we focus the impact analysis of DT in the fitting rooms’ area.


2021 ◽  
Author(s):  
Rodrigo Chamusca Machado ◽  
Fabbio Leite ◽  
Cristiano Xavier ◽  
Alberto Albuquerque ◽  
Samuel Lima ◽  
...  

Objectives/Scope This paper presents how a brazilian Drilling Contractor and a startup built a partnership to optimize the maintenance window of subsea blowout preventers (BOPs) using condition-based maintenance (CBM). It showcases examples of insights about the operational conditions of its components, which were obtained by applying machine learning techniques in real time and historic, structured or unstructured, data. Methods, Procedures, Process From unstructured and structured historical data, which are generated daily from BOP operations, a knowledge bank was built and used to develop normal functioning models. This has been possible even without real-time data, as it has been tested with large sets of operational data collected from event log text files. Software retrieves the data from Event Loggers and creates structured database, comprising analog variables, warnings, alarms and system information. Using machine learning algorithms, the historical data is then used to develop normal behavior modeling for the target components. Thereby, it is possible to use the event logger or real time data to identify abnormal operation moments and detect failure patterns. Critical situations are immediately transmitted to the RTOC (Real-time Operations Center) and management team, while less critical alerts are recorded in the system for further investigation. Results, Observations, Conclusions During the implementation period, Drilling Contractor was able to identify a BOP failure using the detection algorithms and used 100% of the information generated by the system and reports to efficiently plan for equipment maintenance. The system has also been intensively used for incident investigation, helping to identify root causes through data analytics and retro-feeding the machine learning algorithms for future automated failure predictions. This development is expected to significantly reduce the risk of BOP retrieval during the operation for corrective maintenance, increased staff efficiency in maintenance activities, reducing the risk of downtime and improving the scope of maintenance during operational windows, and finally reduction in the cost of spare parts replacementduring maintenance without impact on operational safety. Novel/Additive Information For the near future, the plan is to integrate the system with the Computerized Maintenance Management System (CMMS), checking for historical maintenance, overdue maintenance, certifications, at the same place and time that we are getting real-time operational data and insights. Using real-time data as input, we expect to expand the failure prediction application for other BOP parts (such as regulators, shuttle valves, SPMs (Submounted Plate valves), etc) and increase the applicability for other critical equipment on the rig.


Sign in / Sign up

Export Citation Format

Share Document