scholarly journals Wind and turbulence profiles in a simulated wind tunnel boundary layer

MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 283-290
Author(s):  
S. SIVARAMAKRISHNAN

A system of Honeycomb Flat Plate (HFP) grid and cylindrical rods has been developed to accelerate the growth of a thick (32 cm) turbulent boundary layer, artificially, over rough floor of a low speed short test-section (0.61 m x 0.61 m) wind tunnel. Simulated profiles of wind velocity, longitudinal turbulence intensity and Reynolds stress are shown to have similarity to those of a neutral atmospheric boundary layer over a typical rural terrain. Longitudinal spectrum of turbulence measured at 10,30 and 100 mm above tunnel floor is shown to compare well with atmospheric spectrum and agree closely with the Kolmogoroff's -2/3 law in the inertial sub-range of the spectrum. Based on the length scale of longitudinal turbulence estimated from the spectrum, a scale of 1 :900 has been proposed for laboratory modeling of environmental problems wherein the transport of mass in a neutral atmospheric surface layer IS solely due to eddies of mechanical origin.

1989 ◽  
Vol 111 (2) ◽  
pp. 158-164 ◽  
Author(s):  
J. A. Peterka ◽  
Z. Tan ◽  
J. E. Cermak ◽  
B. Bienkiewicz

Mean and peak wind loads on flat rectangular or circular heliostats were measured on models in a boundary layer wind tunnel which included an atmospheric surface layer simulation. Horizontal and vertical forces, moments about horizontal axes at the ground level and at the centerline of the heliostat, and the moment about the vertical axis through the heliostat center were measured. Results showed that loads are higher than predicted from results obtained in a uniform, low-turbulence flow due to the presence of turbulence. Reduced wind loads were demonstrated for heliostats within a field of heliostats and upper bound curves were developed to provide preliminary design coefficients.


2013 ◽  
Vol 5 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Luciana Bassi Marinho Pires ◽  
Igor Braga De Paula ◽  
Gilberto Fisch ◽  
Ralf Gielow ◽  
Roberto Da Mota Girardi

Author(s):  
Yvan Maciel ◽  
Antoine Vénisse ◽  
Steve Julien ◽  
Jean Lemay

Sign in / Sign up

Export Citation Format

Share Document