Applicability of Taylor’s Hypothesis for Estimating the Mean Streamwise Length Scale of Large-Scale Structures in the Near-Neutral Atmospheric Surface Layer

2019 ◽  
Vol 172 (2) ◽  
pp. 215-237
Author(s):  
GuoWen Han ◽  
GuoHua Wang ◽  
XiaoJing Zheng
1990 ◽  
Vol 211 ◽  
pp. 285-307 ◽  
Author(s):  
Emerick M. Fernando ◽  
Alexander J. Smits

This investigation describes the effects of an adverse pressure gradient on a flat plate supersonic turbulent boundary layer (Mf ≈ 2.9, βx ≈ 5.8, Reθ, ref ≈ 75600). Single normal hot wires and crossed wires were used to study the Reynolds stress behaviour, and the features of the large-scale structures in the boundary layer were investigated by measuring space–time correlations in the normal and spanwise directions. Both the mean flow and the turbulence were strongly affected by the pressure gradient. However, the turbulent stress ratios showed much less variation than the stresses, and the essential nature of the large-scale structures was unaffected by the pressure gradient. The wall pressure distribution in the current experiment was designed to match the pressure distribution on a previously studied curved-wall model where streamline curvature acted in combination with bulk compression. The addition of streamline curvature affects the turbulence strongly, although its influence on the mean velocity field is less pronounced and the modifications to the skin-friction distribution seem to follow the empirical correlations developed by Bradshaw (1974) reasonably well.


1987 ◽  
Vol 183 ◽  
pp. 163-173 ◽  
Author(s):  
D. Joseph Shlien

Ambient fluid of a submerged water jet was continuously tagged with fluorescent dye at a point outside the turbulent region (at 33 jet nozzle diameters from the jet exit). This made it possible to follow the tagged entrained fluid to 73 jet diameters downstream of the exit, a distance unattainable by other methods. The dispersion of the tagged fluid in a plane containing the jet axis and the tagging source was observed and recorded using photography and simple digital image-processing techniques. Most of the entrainment activity appeared to be the result of engulfment by the large-scale structures over an axial distance of ± 1.7B from the source where B is the half-peak velocity radius. The entrained fluid crossed the jet centreline within a downstream distance of Δx = 1.5B.Downstream of the entrainment region, the spread rate of the tagged entrained fluid was close to that of the turbulent jet fluid. However, the peak mean concentration of the tagged entrained fluid was located near the r/x = 0.1 line closest to the tagging source and shifted very slowly towards the jet centreline. A self-preserving distribution of the mean concentration appears to have been approached after a distance of 6B downstream from the tagging source but further verification is needed owing to experimental uncertainties.A small fraction of the tagged entrained fluid was found on the side of the jet remote from the tagging source. On rare occurrences, tagged entrained fluid was observed at the interface most remote from the source.


2018 ◽  
Vol 841 ◽  
pp. 351-379 ◽  
Author(s):  
Christoph Efstathiou ◽  
Mitul Luhar

This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\unicode[STIX]{x1D716}\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A laser Doppler velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_{\unicode[STIX]{x1D70F}}\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by ${<}10\unicode[STIX]{x1D6FF}$ downstream from the porous transition, where $\unicode[STIX]{x1D6FF}$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface (${>}30\,\%$ of the free-stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/\unicode[STIX]{x1D6FF}\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin–Helmholtz vortices that have streamwise length scale $2\unicode[STIX]{x1D6FF}{-}4\unicode[STIX]{x1D6FF}$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.


2010 ◽  
Vol 661 ◽  
pp. 341-364 ◽  
Author(s):  
D. CHUNG ◽  
B. J. McKEON

We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Reτ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity.


2008 ◽  
Vol 608 ◽  
pp. 81-112 ◽  
Author(s):  
XIAOHUA WU ◽  
PARVIZ MOIN

Fully developed incompressible turbulent pipe flow at bulk-velocity- and pipe-diameter-based Reynolds number ReD=44000 was simulated with second-order finite-difference methods on 630 million grid points. The corresponding Kármán number R+, based on pipe radius R, is 1142, and the computational domain length is 15R. The computed mean flow statistics agree well with Princeton Superpipe data at ReD=41727 and at ReD=74000. Second-order turbulence statistics show good agreement with experimental data at ReD=38000. Near the wall the gradient of $\mbox{ln}\overline{u}_{z}^{+}$ with respect to ln(1−r)+ varies with radius except for a narrow region, 70 < (1−r)+ < 120, within which the gradient is approximately 0.149. The gradient of $\overline{u}_{z}^{+}$ with respect to ln{(1−r)++a+} at the present relatively low Reynolds number of ReD=44000 is not consistent with the proposition that the mean axial velocity $\overline{u}_{z}^{+}$ is logarithmic with respect to the sum of the wall distance (1−r)+ and an additive constant a+ within a mesolayer below 300 wall units. For the standard case of a+=0 within the narrow region from (1−r)+=50 to 90, the gradient of $\overline{u}_{z}^{+}$ with respect to ln{(1−r)++a+} is approximately 2.35. Computational results at the lower Reynolds number ReD=5300 also agree well with existing data. The gradient of $\overline{u}_{z}$ with respect to 1−r at ReD=44000 is approximately equal to that at ReD=5300 for the region of 1−r > 0.4. For 5300 < ReD < 44000, bulk-velocity-normalized mean velocity defect profiles from the present DNS and from previous experiments collapse within the same radial range of 1−r > 0.4. A rationale based on the curvature of mean velocity gradient profile is proposed to understand the perplexing existence of logarithmic mean velocity profile in very-low-Reynolds-number pipe flows. Beyond ReD=44000, axial turbulence intensity varies linearly with radius within the range of 0.15 < 1−r < 0.7. Flow visualizations and two-point correlations reveal large-scale structures with comparable near-wall azimuthal dimensions at ReD=44000 and 5300 when measured in wall units. When normalized in outer units, streamwise coherence and azimuthal dimension of the large-scale structures in the pipe core away from the wall are also comparable at these two Reynolds numbers.


Author(s):  
Weijie Shao ◽  
Martin Agelin-Chaab

This paper reports an investigation of the effects of rough forward facing steps on turbulent flows. The surfaces of the rough steps were covered with sandpapers. A particle image velocimetry technique was used to conduct measurements at the mid-plane of the test section and at several locations downstream to 68 step heights. A Reynolds number of Reh = 4800 and δ/h = 4.7 were employed, where h is the mean step height and δ is the incoming boundary layer thickness. The results indicate that mean reattachment length decreases with increasing roughness. In addition, the effect of the step roughness decreases with downstream distance. The proper orthogonal decomposition results showed that the step roughness affects even the large scale structures. Furthermore, the reconstructed turbulence quantities suggest that the step roughness suppresses the large scale turbulence.


1999 ◽  
Vol 391 ◽  
pp. 91-122 ◽  
Author(s):  
J. DELVILLE ◽  
L. UKEILEY ◽  
L. CORDIER ◽  
J. P. BONNET ◽  
M. GLAUSER

Large-scale structures in a plane turbulent mixing layer are studied through the use of the proper orthogonal decomposition (POD). Extensive experimental measurements are obtained in a turbulent plane mixing layer by means of two cross-wire rakes aligned normal to the direction of the mean shear and perpendicular to the mean flow direction. The measurements are acquired well into the asymptotic region. From the measured velocities the two-point spectral tensor is calculated as a function of separation in the cross-stream direction and spanwise and streamwise wavenumbers. The continuity equation is then used for the calculation of the non-measured components of the tensor. The POD is applied using the cross-spectral tensor as its kernel. This decomposition yields an optimal basis set in the mean square sense. The energy contained in the POD modes converges rapidly with the first mode being dominant (49% of the turbulent kinetic energy). Examination of these modes shows that the first mode contains evidence of both known flow organizations in the mixing layer, i.e. quasi-two-dimensional spanwise structures and streamwise aligned vortices. Using the shot-noise theory the dominant mode of the POD is transformed back into physical space. This structure is also indicative of the known flow organizations.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document