scholarly journals Simulation of winter and summer climates with PRL Atmospheric General Circulation Model

MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 391-400
Author(s):  
BIJU THOMAS ◽  
S.V. KASTURE ◽  
S. V. SATYAN

A global, spectral Atmospheric General Circulation Model (AGCM) has been developed indigenously at Physical Research Laboratory (PRL) for climate studies. The model has six a levels in the vertical and has horizontal resolution of 21 waves with rhomboidal truncation. The model includes smooth topography, planetary boundary layer, deep convection, large scale condensation, interactive hydrology, radiation with interactive clouds and diurnal cycle. Sea surface temperature and sea ice values were fixed based on climatological data for different calender months.   The model was integrated for six years starting with an isothermal atmosphere (2400K), zero winds initial conditions and forcing from incoming solar radiation. After one year the model stabilizes. The seasonal averages of various fields of the last five years are discussed in this paper. It is found that the model reproduces reasonably well the seasonal features of atmospheric circulation, seasonal variability and hemispheric differences.

2020 ◽  
Author(s):  
Stefan Brönnimann ◽  
Ralf Hand ◽  
Jörg Franke ◽  
Andrey Martynov

<p>The recently started PALAEO-RA project aims at creating a new global monthly 3-dimensional reanalysis dataset of the past 600 years' climate. Large spatial and temporal gaps in the available historical data on these time scale make the climate history being an under-determined problem when using observations only. In PALAEO-RA we will addionally use information from an ensemble of simulations with an atmospheric general circulation model (AGCM). The model offers additional physical constraints. The model reproduces teleconnection patterns and reflects typical large-scale modes of variability to set the historical data into a physically consistent regional to global context.</p><p>In brief, the method that we plan to use consists of two steps: First, we are currently producing an  ensemble of historical simulations with the atmospheric general circulation model ECHAM6. Once finished, it will have a size of ca. 30 members, covering the period fom 1420 to present. The ensemble is supposed to reflect the range of realistic climate states under prescribed historical radiative forcings (based on the PMIP4 setup) and ocean boundary conditions (HadISST.2 & SST reconstructions by Samakinwa et al., see abstract EGU2020-8744).</p><p>Secondly, we will apply Ensemble Kalman Fitting, a technique for the offline assimilation of historical observations (instrumental observations, documentary data, tree ring width and other proxies), basing on the assumption that the occurrence of a distinct observation has a different probability depending on the meso- and large-scale circulation patterns of the atmosphere.</p><p>Our poster will give a brief overview on the project with a focus on introducing the AGCM ensemble, also to allow for discussions on further applications of the latter.</p>


Sign in / Sign up

Export Citation Format

Share Document