scholarly journals A Review of the Latest ICRP Recommendations on Effective Dose: Commentary of ICRP Publication 147

2021 ◽  
Vol 56 (3) ◽  
pp. 133-144
Author(s):  
Michiaki KAI
2005 ◽  
Vol 44 (05) ◽  
pp. 119-130 ◽  
Author(s):  
P. Schnell-Inderst ◽  
D. Noßke ◽  
M. Weiss ◽  
A. Stamm-Meyer ◽  
G. Brix ◽  
...  

Summary:The aim of this study was to estimate both the frequency and effective dose of nuclear medicine procedures performed in Germany between 1996 and 2000 for different subgroups of patients. Methods: Electronically archived data from 14 hospitals and 10 private practices were restored and statistically analyzed. The effective dose per examination was calculated according to ICRP publication 80 using the tissue weighting factors given in ICRP publication 60. Based on the data collected, statistical parameters were computed to characterize the frequency and effective dose of the various nuclear medicine procedures. Results: In total, 604,771 nuclear medicine procedures performed in 433,709 patients were analyzed. On average, 1.4 examinations were carried out per patient and year. The median effective dose was 1.7 [5.-95. percentile; mean: 0.4–8.5; 2.9] mSv per examination and 2.3 [0.5–11.2; 3.5] mSv per patient. Interestingly, the mean effective dose per examination, but not the number of examinations per year increased with the age of the patients. Most frequent were examinations of the thyroid (36.7%), the skeleton (27.1%) and the cardiovascular system (11.1%), which were associated with a median effective dose of 0.5 [0.5–1.1; 0.7] mSv, 3.4 [2.9–5.1; 3.6] mSv and 7.3 [3.2–21.0; 9.5] mSv, respectively. Over the five-year period examined, the total annual number of PET procedures (222.3%) as well as of examinations of thyroid (24.5%), skeleton (17.9%), and the cardiovascular system (14.9%) increased markedly, whereas a decrease was observed for brain (-39.3%), lung (-20.2%) and renal (-15.0%) scans. Conclusion: The age- and gender-specific data presented in this study provide detailed public health information on both the current status and recent trends in the practice of diagnostic nuclear medicine examinations.


2020 ◽  
Vol 191 (1) ◽  
pp. 39-120
Author(s):  
Scott O Schwahn ◽  
Caleigh E Samuels ◽  
Richard W Leggett

Abstract Inhalation and ingestion dose coefficients for the embryo and fetus from intakes of radionuclides by the mother are provided in the International Commission on Radiological Protection (ICRP) Publication 88 for intake of each of 74 radionuclides. To address the many other possible radionuclides to which workers may be exposed, effective dose coefficients were developed for the embryo/fetus for all additional radionuclides addressed in ICRP Publication 107 with half-life of 10 min or more. The general approach was to use the estimated dose to the mother’s uterus during pregnancy as a scalable proxy for the dose to the embryo/fetus. The set of scaling factors used in the study was derived from analyses of the relationships of the dose to the mother’s uterus and the effective dose to the embryo/fetus for the ~400 cases (considering two intake modes and multiple forms of many of the radionuclides) addressed in Publication 88.


2014 ◽  
Vol 15 (5) ◽  
pp. 246-256 ◽  
Author(s):  
Masanao Kobayashi ◽  
Yasuki Asada ◽  
Kosuke Matsubara ◽  
Yuta Matsunaga ◽  
Ai Kawaguchi ◽  
...  

2012 ◽  
Vol 41 (3-4) ◽  
pp. 12-23 ◽  
Author(s):  
H-G. Menzel ◽  
J.D. Harrison

Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.


2011 ◽  
Vol 100 (5) ◽  
pp. 462-467 ◽  
Author(s):  
Chan Hyeong Kim ◽  
Sungkoo Cho ◽  
Jong Hwi Jeong ◽  
Wesley E. Bolch ◽  
Warren D. Reece ◽  
...  

2002 ◽  
Vol 41 (02) ◽  
pp. 102-107 ◽  
Author(s):  
J. Kopp ◽  
H. Vogt ◽  
F. Wawroschek ◽  
S. Gröber ◽  
R. Dorn ◽  
...  

Summary Aim: To visualise the sentinel lymph nodes (SLNs) of the prostate we injected the radiotracer into the parenchyma of the prostate. The activity was deposited in liver, spleen, bone marrow, urinary bladder and regional lymphatic system. The aim of this work is to determine biokinetical data and to estimate radiation doses to the patient. Methods: The patients with prostate cancer received a sonographically controlled, transrectal administration of 99mTc-Nanocoll®, injected directly into both prostate lobes. In 10 randomly selected patients radionuclide distribution and its time course was determined via regions of interest (ROIs) over prostate, urinary bladder, liver, spleen and the lymph nodes. The uptake in the SLNs was estimated from gamma probe measurements at the surgically removed nodes. To compare tumour positive with tumour free lymph nodes according to SLN-uptake and SLNlocalisation we evaluated 108 lymph nodes out of 24 patients with tumour positive SLN. For calculating the effective dose according to ICRP 60 of the patients we used the MIRD-method and the Mirdose 3.1 software. Results: The average uptake of separate organs was: bladder content 24%, liver 25.5%, spleen 2%, sum of SLN 0.5%. An average of 9% of the applied activity remained in the prostate. The residual activity was mainly accumulated in bone marrow and blood. Occasionally a weak activity enrichment in intestinal tract and kidneys could be recognized. The effective dose to the patient was estimated to 7.6 μSv/MBq. The radioactivity uptake of the SLN varied in several orders of magnitude between 0.006% and 0.6%. The probability of SLN-metastasis was found to be independent from tracer uptake in the lymph node. The radioactivity uptake of the SLNs in distinct lymph node regions showed no significant differences. Conclusion: The radiotracer is transferred out of the prostate via blood flow, by direct transfer via the urethra into the bladder and by lymphatic transport. Injecting a total activity of 200 MBq leads to a mean effective dose of 1.5 mSv. It is not recommended to use the tracer uptake in lymph nodes as the only criterion to characterize SLNs.


1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


1996 ◽  
Vol 75 (05) ◽  
pp. 731-733 ◽  
Author(s):  
V Cazaux ◽  
B Gauthier ◽  
A Elias ◽  
D Lefebvre ◽  
J Tredez ◽  
...  

SummaryDue to large inter-individual variations, the dose of vitamin K antagonist required to target the desired hypocoagulability is hardly predictible for a given patient, and the time needed to reach therapeutic equilibrium may be excessively long. This work reports on a simple method for predicting the daily maintenance dose of fluindione after the third intake. In a first step, 37 patients were delivered 20 mg of fluindione once a day, at 6 p.m. for 3 consecutive days. On the morning of the 4th day an INR was performed. During the following days the dose was adjusted to target an INR between 2 and 3. There was a good correlation (r = 0.83, p<0.001) between the INR performed on the morning of day 4 and the daily maintenance dose determined later by successive approximations. This allowed us to write a decisional algorithm to predict the effective maintenance dose of fluindione from the INR performed on day 4. The usefulness and the safety of this approach was tested in a second prospective study on 46 patients receiving fluindione according to the same initial scheme. The predicted dose was compared to the effective dose soon after having reached the equilibrium, then 30 and 90 days after. To within 5 mg (one quarter of a tablet), the predicted dose was the effective dose in 98%, 86% and 81% of the patients at the 3 times respectively. The mean time needed to reach the therapeutic equilibrium was reduced from 13 days in the first study to 6 days in the second study. No hemorrhagic complication occurred. Thus the strategy formerly developed to predict the daily maintenance dose of warfarin from the prothrombin time ratio or the thrombotest performed 3 days after starting the treatment may also be applied to fluindione and the INR measurement.


Sign in / Sign up

Export Citation Format

Share Document