Finding the Suitable Area for Biomass Fuel Power Plant from Pararubber Trees in Rayong Province

2013 ◽  
Vol 13 (2) ◽  
pp. 60-70
Author(s):  
Nabhon Surongkarat ◽  
Dr.Tunlawit Satapanajaru

Biomass fuel as carbon neutral, abundant, domestic, cost effective is being reconsidered to fuel-up the power plant to produce electricity in clean way. But utilization of biomass fuel directly in existing conventional power plant causes problem in turbine such as erosion, hot corrosion, clogging and depositions [1]. As such combustion of biomass fuel outside the primary cycle eradicates potential hazards for turbine. In such a case indirectly fired micro gas turbine opens a door to biomass fuel as this technology is free from negative aspects of direct combustion as well as making micro gas turbine feasible to generate electricity in small scale at non-grid areas for individual consumer or group of consumers. In this research, the effect of different types of biomass fuel on operating parameters as well as on output electrical power of externally fired micro gas turbine (EFmGT)has been analyzed. The biomass fuels are categorized on the basis of air to fuel ratio (AFR) using stoichiometry combustion theory. It is found from results that parameters like air mass flow rate, compression ratio, heat exchanger effectiveness, turbine inlet temperature, combustion temperature, and temperature difference in heat exchanger affect the performance of EFmGT. Also types of biomass fuel have substantial impacts on these performance parameters as well as on electrical power output of EFmGT cycle.


2018 ◽  
Vol 74 ◽  
pp. 03001 ◽  
Author(s):  
Kenta Omura ◽  
Pandyaswargo Andante Hadi ◽  
Onoda Hiroshi

In response to Japan’s increase on coal dependence, co-firing of woody biomass in a coal power plant has been considered as the most feasible sustainable alternative. We propose torrefaction as an effective method to improve the quality of biomass fuel. To measure how much CO2 can be avoided by utilizing torrefied fuel, Life Cycle CO2 (LCCO2) of woody biomass co-firing in the Japanese coal power plant was conducted in this study. As a comparative analysis in the LCCO2, scenarios constructed included the use of woody biomass in the form of chip, pellet, and torrefied fuel. Due to the unavailability of large quantity domestic feedstocks in Japan, Indonesia was chosen as the origin of the imported woody biomass in the simulated scenarios. The results showed that significant CO2 reduction could be achieved especially in the co-firing that includes torrefied fuel. In the case where 30cal% of torrefied fuel or 5cal% of pellets were used for co-firing in a 50 MW capacity coal power plant, 95,000 t of CO2 could be avoided annually compared to using 100% coal.


2013 ◽  
Vol 683 ◽  
pp. 246-249 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris ◽  
Hussain Hamoud Al-Kayiem

Combustion of coal, a fossil fuel, in power plant, is a major source of carbon dioxide emission, a greenhouse gas that causes global warming. Malaysia is one of the major exporters of palm oil and has 421 palm oil mills operating in 2010. Some of the residues from these mills like palm kernel shell and palm mesocarp fibre were converted into value-added products. An optimum biomass fuel briquette was obtained with palm kernel shell and palm mesocarp fibre as the major ingredients. Co-firing coal with biomass is a possible approach for power plant to curb the excessive emission of carbon dioxide. In this study, bio-briquette having 50% coal and 50% biomass which consisted of the ingredients of optimum biomass fuel briquette were studied in details. Comparison of the fuel properties, combustion characteristics and carbon dioxide emission between the optimum biomass fuel briquette and bio-briquette was made.


Sign in / Sign up

Export Citation Format

Share Document