scholarly journals Characterization of Morganella sp. for its Paraquat Degradation Potential

2021 ◽  
Vol 3 (2) ◽  
pp. 12-16
Author(s):  
S.D. Haruna ◽  
A.J. Sufyan ◽  
S. Ibrahim ◽  
A. Babandi ◽  
D. Shehu ◽  
...  

One of the beneficial roles of the microbial population is their ability to convert toxic herbicides to lesser toxic compounds such as water and carbon (IV) oxide. Paraquat which is an acutely toxic herbicide is used on farmlands and has been found to affect human health. This study was aimed at characterizing bacteria with the potential to degrade paraquat. Previously isolated bacteria from culture collection labelled A-F were screened for their potential to degrade and utilized paraquat as the sole carbon source in Bushnell Hass agar media. Of the six isolates, isolate E (Morganella sp.) was observed to have the highest growth and tolerance to paraquat after 72 h of incubation at 37 ºC. Characterization study revealed that Morganella sp. can utilize and grow with optimum conditions of pH 6.5, the temperature of 30 ºC and can tolerate up to 400 mg/L paraquat concentration with an increase in growth as inoculum size increases. Thus, these findings showed that Morganella sp. can degrade toxic paraquat to a less toxic form and therefore can be a good isolate for the future bioremediation process of the pollutant.

2021 ◽  
Vol 9 (2) ◽  
pp. 8-12
Author(s):  
A.J. Sufyan ◽  
S. Ibrahim ◽  
A. Babandi ◽  
Hafeez Muhammad Yakasai

Butachlor is a chloroacetanilide herbicide that is selective in action and commonly used for pre-emergence control of weeds. It is believed to have range of toxicity from acute to chronic and also can cause DNA strand breaks and chromosomal aberrations in humans. This study was aimed at characterizing the potential of previously isolated bacteria for butachlor degradation. The isolates from culture collection, labelled A-F were screened for butachlor degradation on Bushnell Hass agar media with butachlor as a sole carbon source. Isolate A (molybdenum-reducing and aniline-degrading Pseudomonas sp.) was observed to grow best and tolerated the highest concentration of butachlor supplemented in the media after 72 h of incubation at 37 ℃. Characterization study revealed that the Pseudomonas sp. can utilize and grow with butachlor at optimum pH between 6.0 - 6.5, temperature between 30 – 37 ℃ and can tolerate up to 600 mg/L butachlor concentration with increase in growth as inoculum size increases. Additionally, this bacterial strain shows no lag phase regardless of the concentration of the herbicide used and reach its maximum growth after 24 h of incubation. The ability of this isolate to tolerate and utilize butachlor as sole carbon source makes it suitable for future bioremediation of this toxicant.


2021 ◽  
Vol 9 (2) ◽  
pp. 17-20
Author(s):  
A.U. Tijjani ◽  
A.J. Sufyan ◽  
S. Ibrahim ◽  
D. Shehu ◽  
M. Ya'u ◽  
...  

Microorganisms play an integral role in detoxification and removal of toxic compounds from the environment. Aniline is the simplest aromatic amine, consisting of a phenyl group attached to an amino group that is used as herbicide to control weeds. Aniline is detrimental to both environment and health. In this research, six previously isolated bacteria (isolate A-F) were screened on Bushnell Hass media for their potential to grow and utilize aniline as a sole carbon source. Isolate A (Pseudomonas sp.) was found to tolerate and grow best with aniline sole source of carbon. Optimum conditions for aniline degradation by this isolate were found to be pH 6.0, temperature between 30 and 37 °C, inoculums size of 600 μL, aniline concentration of 200 mg/L and incubation time of 96 h. The capacity of this isolate to reduce toxic aniline to less toxic form is novel and makes the bacterium important instrument for bioremediation of this pollutant.


Author(s):  
Y. Murtala ◽  
B. C. Nwanguma ◽  
L. U. S. Ezeanyika

Background: Despite the banned on the use of dichlorodiphenyltrichloroethane (DDT) and other Persistent Organic Pollutants (POPs) by the Stockholm Convention for their toxicity, emerging shreds of evidence have indicated that DDT is, however, still in use in developing countries. This might increase the global burden of DDT contamination and its hazardous effects. Aim: This study focused on the isolation and characterization of p,p’-DDT-degrading bacterium from a tropical agricultural soil. Methodology: Standard isolation procedure was used for the screening and isolation of the strain. The 16S rRNA and phylogenetic analyses were used to identify the isolate and established protocols were followed to characterize the strain. Results: A new strain belonging to the genus Aeromonas was isolated from agricultural soil using minimal salt-p,p’-DDT enrichment medium. The 16S rRNA sequencing was used to identify the strain and the partial sequence was deposited in the NCBI GenBank as Aeromonas sp. Strain MY1. This mesophilic isolate was capable of utilizing up to 50 mgL-1 of p,p’-DDT as the sole carbon source at an optimum pH of 7.5 and optimum temperature of 35 °C within 120 h under aerobic conditions. Fe2+ (0.2 mgL-1) demonstrated a stimulatory effect on the p,p’-DDT degradation capacity by the strain MY1. However, Zn, Cu, Pb, Hg, Ag and Cr ions have demonstrated various patterns of inhibitory effect on the p,p’-DDT degradation capacity of the isolate at 0.2 mgL-1. The strain MY1 could be a promising candidate for the bioremediation of p,p’-DDT contaminant. Conclusion: Aeromonas sp. strain MY1 was capable of utilizing p,p’-DDT as a sole carbon source under aerobic conditions. The utilization capacity of the strain was influenced by some heavy metals. Fe was found to enhance the p,p’-DDT utilization capacity of the isolate at a lower concentration. While Zn, Cu, Pb, Hg, Ag and Cr showed various patterns of inhibitory effect.


2009 ◽  
Vol 25 ◽  
pp. S69
Author(s):  
A. Loredo-Treviño ◽  
J.A. Sánchez-Vasquez ◽  
R. Rodríguez-Herrera ◽  
C. Aguilar

2017 ◽  
Vol 09 (03) ◽  
Author(s):  
Salman Ahmad ◽  
Abuzer Amir ◽  
Md Zafaryab ◽  
Khwaja Osama ◽  
Soban Ahmad Faridi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document