scholarly journals Characterization of Butachlor Degradation by A Molybdenum-Reducing and Aniline-degrading Pseudomonas sp.

2021 ◽  
Vol 9 (2) ◽  
pp. 8-12
Author(s):  
A.J. Sufyan ◽  
S. Ibrahim ◽  
A. Babandi ◽  
Hafeez Muhammad Yakasai

Butachlor is a chloroacetanilide herbicide that is selective in action and commonly used for pre-emergence control of weeds. It is believed to have range of toxicity from acute to chronic and also can cause DNA strand breaks and chromosomal aberrations in humans. This study was aimed at characterizing the potential of previously isolated bacteria for butachlor degradation. The isolates from culture collection, labelled A-F were screened for butachlor degradation on Bushnell Hass agar media with butachlor as a sole carbon source. Isolate A (molybdenum-reducing and aniline-degrading Pseudomonas sp.) was observed to grow best and tolerated the highest concentration of butachlor supplemented in the media after 72 h of incubation at 37 ℃. Characterization study revealed that the Pseudomonas sp. can utilize and grow with butachlor at optimum pH between 6.0 - 6.5, temperature between 30 – 37 ℃ and can tolerate up to 600 mg/L butachlor concentration with increase in growth as inoculum size increases. Additionally, this bacterial strain shows no lag phase regardless of the concentration of the herbicide used and reach its maximum growth after 24 h of incubation. The ability of this isolate to tolerate and utilize butachlor as sole carbon source makes it suitable for future bioremediation of this toxicant.

2021 ◽  
Vol 3 (2) ◽  
pp. 12-16
Author(s):  
S.D. Haruna ◽  
A.J. Sufyan ◽  
S. Ibrahim ◽  
A. Babandi ◽  
D. Shehu ◽  
...  

One of the beneficial roles of the microbial population is their ability to convert toxic herbicides to lesser toxic compounds such as water and carbon (IV) oxide. Paraquat which is an acutely toxic herbicide is used on farmlands and has been found to affect human health. This study was aimed at characterizing bacteria with the potential to degrade paraquat. Previously isolated bacteria from culture collection labelled A-F were screened for their potential to degrade and utilized paraquat as the sole carbon source in Bushnell Hass agar media. Of the six isolates, isolate E (Morganella sp.) was observed to have the highest growth and tolerance to paraquat after 72 h of incubation at 37 ºC. Characterization study revealed that Morganella sp. can utilize and grow with optimum conditions of pH 6.5, the temperature of 30 ºC and can tolerate up to 400 mg/L paraquat concentration with an increase in growth as inoculum size increases. Thus, these findings showed that Morganella sp. can degrade toxic paraquat to a less toxic form and therefore can be a good isolate for the future bioremediation process of the pollutant.


Author(s):  
Vivek Kumar Ranjan ◽  
Shriparna Mukherjee ◽  
Subarna Thakur ◽  
Krutika Gupta ◽  
Ranadhir Chakraborty

1961 ◽  
Vol 155 (959) ◽  
pp. 195-201 ◽  

The lag preceding growth of Bact. lactis aerogenes (Aerobacter aerogenes) after a first transfer to a medium containing D-arabinose as sole carbon source increases with the age and decreases with the size of the inoculum. During the long lag phase the β -galactosidase activity declines steeply. In contrast with this (and with a control ageing in a glucose medium) the D-ribulose isomerase activity is maintained, although no detectable consumption of D-arabinose occurs. If the long lag of unadapted cells in D-arabinose is divided into parts by intermediate passages in glucose or lactose media, the sum of the partial lags is nearly constant and equal to that observed when there is no interruption. But the periodic passages in the other media increase the rate at which growth eventually occurs in the D-arabinose. It is concluded that during the lag a decay of the enzymes in general occurs concomitantly with the development of the specific mechanisms concerned in the utilization of the new substrate. The balance of these processes (together with varying loss or retention of diffusible metabolites) is largely responsible for the observed variations in lag and mean generation time.


2014 ◽  
Vol 80 (24) ◽  
pp. 7673-7682 ◽  
Author(s):  
Siyun Wang ◽  
Renato H. Orsi ◽  
Silin Tang ◽  
Wei Zhang ◽  
Martin Wiedmann ◽  
...  

ABSTRACTAlternative sigma (σ) factors and phosphotransferase systems (PTSs) play pivotal roles in the environmental adaptation and virulence ofListeria monocytogenes. The growth of theL. monocytogenesparent strain 10403S and 15 isogenic alternative σ factor mutants was assessed in defined minimal medium (DM) with PTS-dependent or non-PTS-dependent carbon sources at 25°C or 37°C. Overall, our results suggested that the regulatory effect of alternative σ factors on the growth ofL. monocytogenesis dependent on the temperature and the carbon source. One-way analysis of variance (one-way ANOVA) showed that the factor “strain” had a significant effect on the maximum growth rate (μmax), lag phase duration (λ), and maximum optical density (ODmax) in PTS-dependent carbon sources (P< 0.05) but not in a non-PTS-dependent carbon source. Also, the ODmaxwas not affected by strain for any of the three PTS-dependent carbon sources at 25°C but was affected by strain at 37°C. Monitoring by quantitative real-time PCR (qRT-PCR) showed that transcript levels forlmo0027, a glucose-glucoside PTS permease (PTSGlc-1)-encoding gene, were higher in the absence of σL, and lower in the absence of σH, than in the parent strain. Our data thus indicate that σLnegatively regulateslmo0027and that the increased μmaxobserved for the ΔsigLstrain in DM with glucose may be associated with increased expression of PTSGlc-1 encoded bylmo0027. Our findings suggest that σHand σLmediate the PTS-dependent growth ofL. monocytogenesthrough complex transcriptional regulations and fine-tuning of the expression of specificptsgenes, includinglmo0027. Our findings also reveal a more important and complex role of alternative σ factors in the regulation of growth in different sugar sources than previously assumed.


2009 ◽  
Vol 61 (2) ◽  
pp. 159-164 ◽  
Author(s):  
B. Jovcic ◽  
Jelena Begovic ◽  
Jelena Lozo ◽  
L. Topisirovic ◽  
Milan Kojic

Pseudomonas sp. ATCC19151 harbors a gene encoding a putative alkylsulfatase (sdsA). Here we report a growth ability of this strain in minimal media containing 0.5, 0.75, and 1% sodium dodecyl sulfate as the sole carbon source. The most prominent growth was detected for the minimal medium with 0.5% SDS, so this concentration of SDS was used to monitor Pseudomonas sp. ATCC19151 SDS biodegradation dynamics. Bacterial growth coincided with the disappearance of SDS. Antibiotic susceptibility was tested as well. Pseudomonas sp. ATCC19151 was resistant to six out of nine tested antibiotics, including ampicillin, tetracycline, chloramphenicol, tobramycin, nalidixic acid, and gentamycin.


1985 ◽  
Vol 31 (11) ◽  
pp. 973-976 ◽  
Author(s):  
N. Lisker ◽  
N. Paster ◽  
I. Chet

Addition of 10−2 ML-cysteine, L-cystine, or S-ethyl-L-cysteine to a synthetic medium containing xylose as the sole carbon source did not decrease ochratoxin production by Aspergillus ochraceus. At that concentration, DL-homocysteine thiolactone HCl, DL-cysteine HCl, L-ethionine, S-methyl-L-cysteine, and glutathione (reduced) strongly inhibited ochratoxin production. DL-Homocysteine thiolactone HCl, DL-cysteine HCl, and L-ethionine also strongly inhibited fungal growth. At lower concentrations (10−3and 10−4 M) only L-ethionine decreased the toxin production. Ochratoxin inhibition caused by DL-homocysteine thiolactone HCl, DL-cysteine HCl, and glutathione was observed only in cases where the pH of the media was below 5.0. The inhibition caused by 10−3 M ethionine was partially prevented by the addition of 10−3 M methionine but this was not the case after the addition of S-methyl-L-cysteine to the medium.


Author(s):  
Vincent Chigor ◽  
Chidiebele Nwankwo ◽  
Uchenna Ogbodo ◽  
Joseph Ugwu

Background: Low Density Polyethylene (LDPE) are plastic materials extensively used in packaging, constituting recalcitrant environmental pollutants that defy natural degradation processes. Aim: This study isolated bacteria from a Nigerian environment and assessed their potential for LDPE biodegradation. Methods: Using standard procedures, Bacteria were isolated from polythene samples collected from farmlands and waste dump sites in Nsukka metropolis. Mineral salt medium (MSM) was prepared, with LPDE as sole carbon source, and used for isolation. Optical density (OD600 nm) was used to study bacterial growth on LDPE as sole carbon source as proof of biodegradation. Both organisms demonstrated steady growth on LDPE over time. Results: Pseudomonas aeruginosa and Micrococcus sp. were identified based on morphological and biochemical characteristics. Ability to grow on LDPE as a sole carbon source was studied as evidence of polyethylene biodegradation. Organisms were inoculated into MSM and incubated at 37°C and 50°C for 15 days. Maximum growth was recorded after 15 days of incubation for both organisms. P. aeruginosa and Micrococcus sp. showed steady growth at 37°C as well as 50 ⁰C. Micrococcus sp. recorded highest growth; 0.324 nm and 0.312 nm at 37°C and 50°C respectively, after 15 days. Similarly, P. aeruginosa recorded highest growth of 0.40 nm and 0.258 nm for 37°C and 50°C respectively. LDPE degradation increased with increase in time. Conclusion: This study demonstrates the enormous polyethylene-degrading potentials of P. aeruginosa and Micrococcus sp. isolated from Nsukka, Nigeria.


2002 ◽  
Vol 68 (5) ◽  
pp. 2368-2375 ◽  
Author(s):  
Susana I. de Azevedo Wäsch ◽  
Jan R. van der Ploeg ◽  
Tere Maire ◽  
Alice Lebreton ◽  
Andreas Kiener ◽  
...  

ABSTRACT Pseudomonas sp. strain KIE171 was able to grow with isopropylamine or l-alaninol [S-(+)-2-amino-1-propanol] as the sole carbon source, but not with d-alaninol. To investigate the hypothesis that l-alaninol is an intermediate in the degradation of isopropylamine, two mini-Tn5 mutants unable to utilize both isopropylamine and l-alaninol were isolated. Whereas mutant KIE171-BI transformed isopropylamine to l-alaninol, mutant KIE171-BII failed to do so. The two genes containing a transposon insertion were cloned, and the DNA regions flanking the insertions were sequenced. Two clusters, one comprising eight ipu (isopropylamine utilization) genes (ipuABCDEFGH) and the other encompassing two genes (ipuI and orf259), were identified. Comparisons of sequences of the deduced Ipu proteins and those in the database suggested that isopropylamine is transported into the cytoplasm by a putative permease, IpuG. The next step, the formation of γ-glutamyl-isopropylamide from isopropylamine, ATP, and l-glutamate, was shown to be catalyzed by IpuC, a γ-glutamylamide synthetase. γ-Glutamyl-isopropylamide is then subjected to stereospecific monooxygenation by the hypothetical four-component system IpuABDE, thereby yielding γ-glutamyl-l-alaninol [γ(l-glutamyl)-l-hydroxy-isopropylamide]. Enzymatic hydrolysis by a hydrolase, IpuF, was shown to finally liberate l-alaninol and to regenerate l-glutamate. No gene(s) encoding an enzyme for the next step in the degradation of isopropylamine was found in the ipu clusters. Presumably, l-alaninol is oxidized by an alcohol dehydrogenase to yield l-2-aminopropionaldehyde or it is deaminated by an ammonia lyase to propionaldehyde. Genetic evidence indicated that the aldehyde formed is then further oxidized by the hypothetical aldehyde dehydrogenases IpuI and IpuH to either l-alanine or propionic acid, compounds which can be processed by reactions of the intermediary metabolism.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Alberto Millán ◽  
Núria Sala ◽  
Mercè Torres ◽  
Ramon Canela-Garayoa

The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.


Sign in / Sign up

Export Citation Format

Share Document