fungal strains
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 252)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 8 (4) ◽  
pp. 248-253
Author(s):  
Aarti Sangray ◽  
Ajeet Pal Singh ◽  
Amar Pal Singh

To evaluate the activity of Ethanolic and Aqueous extracts of leaves of against three fungal strains i.e. MTCC3814, and Candida tropicalis MTCC9038 in-vitro.Phytochemical analysis of belonging to family brassicacaea was examined using Ethanolic and Aqueous extracts. Ethanolic and Aqueous extracts of leaves of were investigated individually for antifungal activity by Agar well diffusion method. Both the extracts were tested against selected fungal strains i.e. and to find the inhibitory activities of fungal growth at the dose level of 50 and 100 μg/ml.The phytochemical analysis of ethanolic and aqueous extracts confirmed the presence of phenolic compounds, glycosides, tannins, carbohydrates, proteins, amino acids, tannins, reducing suger, non-reducing suger and inorganic compounds such as calcium, magnesium, iron, carbonate & sulphates. Ethanolic extract of showed considerably high antifungal activities against selected microorganisms than aqueous extract.Although the active components were not isolated but antifungal active plant principles such as flavonoids, glycosides and tannins were observed in the extract. Ethanolic extract of possess effective antifungal properties for selected fungal strains i.e.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Fadoua Bennouna ◽  
Moulay Sadiki ◽  
Soumya Elabed ◽  
Saad Ibnsouda Koraichi ◽  
Mohammed Lachkar

Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains’ adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.


2022 ◽  
Vol 15 (1) ◽  
pp. 74
Author(s):  
Cao Van Anh ◽  
Joo-Hee Kwon ◽  
Jong Soon Kang ◽  
Hwa-Sun Lee ◽  
Chang-Su Heo ◽  
...  

A chemical investigation on the EtOAc extracts from two marine-derived fungal strains of Aspergillus unguis resulted in the isolation of three previously undescribed phenolic polyketides including unguidepside C (1), aspersidone B (3), and agonodepside C (12), and their 14 known congeners. The structures of the new compounds were determined based on detailed analysis and comparison of their spectroscopic data with literature values, as well as Snatzke’s method. The new compounds (1, 3, and 12) displayed a significant anti-Gram-positive bacterial activity, with MIC values ranging from 5.3 to 22.1 µM. Additionally, the isolated compounds (1–11 and 13–16) were evaluated for their cytotoxicity against a panel of tumor cell lines. Most of them (except for 9) displayed cytotoxicity against all the tested cell lines, with IC50 values ranging from 2.5 to 46.9 µM.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Sami Ullah ◽  
Abu Bakar Muhammad Raza ◽  
Mohamed Alkafafy ◽  
Samy Sayed ◽  
Muhammad Imran Hamid ◽  
...  

Abstract Background As different biogeographic strains and isolates of entomopathogenic fungi vary in their genetic, enzymatic and pathogenic characteristics, this study assessed the virulence of 2 indigenous strains of Beauveria bassiana (Balsam) Vuillemin and Metarhizium anisopliae (Metschn.) Sorokin (Ascomycota, Hypocreales: Clavicipitaceae), isolated from naturally infected insect cadavers, against the 3rd instar nymphs of Myzus persicae (Sulzer) (Hemiptera: Aphididae) and 3rd instar larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) using leaf-dip and larval-dip methods, respectively. Results Both fungal isolates exhibited considerable pathogenicity against M. persicae and S. frugiperda. Mortality in all bioassays was conidial concentration and exposure time dependent and increased significantly along with both factors (R2 = 0.86–0.99 for B. bassiana and 0.82–0.94 for M. anisopliae). Moreover, M. anisopliae isolate appeared more virulent to S. frugiperda larvae than B. bassiana isolate, while the later fungal isolate was more lethal to M. persicae nymphs than the former one. At the highest conidial concentration (1.0 × 109 conidia/ml), M. anisopliae caused maximum mean mortality of S. frugiperda (88%) and M. persicae (65%) and B. bassiana exhibited maximum mean mortality of S. frugiperda (76%) and M. persicae (94%). Moreover, probit regression analyses showed LT50 values for M. persicae of 4.57 and 6.86 days at 1.0 × 109 conidia/ml for the isolates of B. bassiana and M. anisopliae, respectively, while LC50 values were 7.75 × 106 and 8.70 × 107 conidia/ml after 10th day of application, for the isolates of B. bassiana and M. anisopliae, respectively, against M. persicae. Similarly, LT50 values for S. frugiperda were 7.75 and 7.03 days for 1.0 × 109 conidia/ml concentration and LC50 values were 2.84 × 107 and 8.84 × 105 conidia/ml at 10th day data for the isolates of B. bassiana and M. anisopliae, respectively. Conclusion Overall study results demonstrated the effectiveness of B. bassiana and M. anisopliae against M. persicae and S. frugiperda, respectively. However, field evaluations of these indigenously isolated promising fungal strains against these insect pests.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Naila Iram ◽  
Muhammad Asif Hanif ◽  
Haq Nawaz Bhatti ◽  
Muhammad Shahid

Persistentantimicrobial drugs treatmenthas resulted in antimicrobial resistance in fungi. There is always a gap for newer antifungal agent. As fungi are associated with multiple health risks in humans and many diseases in crops as well.Objective: To find alternate natural antimicrobial agent as compared to the synthetic one. Method:Essential oil of Trachyspermumammi was isolated, fractionated, and subjected to GC-MS analysis. Components from fractions were derivatized to check their antimicrobial potential against fungal resistant strains. Results:Analysis showed γ -terpinene (39%), α-phellandrene (1.3%), α-pinene (0.5%), Sabinene (0.15%), β-pinene (4.40%),  β-myrcene (1.14%), O-cymene (15.78%),  p-cymefne (38.78%), and other components were less than 1%. Fractional components were derivatised and their antifungal action was studied. Conclusion: Ajwain oil components found to be good against resistant fungal strains. While some derivatives showed more and some less antimicrobial action.


Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.


Author(s):  
Ramandeep Kaur ◽  
Joginder Singh

Cypermethrin insecticide is widely used to prevent and control pest and crop diseases though, its residues have caused significant damage to the environment and living organisms. Microbial remediation becomes a popular approach to counter the toxicity of cypermethrin in both aquatic as well as terrestrial life. Cypermethrin can be effectively degraded to nontoxic compounds by bacterial and fungal strains. Various bacterial and fungal strains such as Ochrobactrum lupini DG-S-01, Bacillus sp. strain SG2, Azoarcus indigens strain HZ5, Streptomyces aureus strain HP-S-01, and Aspergillus oryzae M-4 are used for the cypermethrin degradation. Extensive usage of cypermethrin has caused problems such as surface water contamination, reduced fertility of the soil, detrimental effects on soil microbiota and non-targeted species. Due to environmental concerns associated with the cypermethrin in groundwater and food products, there is a crucial need to develop economical, rapid, and reliable techniques that can be used for field applications. An in-depth understanding of cypermethrin is explored in this review paper and possible solutions to mitigate its environmental toxicity are suggested.


Author(s):  
Anupam Sharma ◽  
Alok Pal Jain ◽  
Mayank Gangwar

The aim of the study was to develop, synthesis, and characterise a novel 1,3,5-trisubstituted-2-pyrazolines derivative, as well as to evaluate its antifungal activity. The reaction of chalcone derivatives with succinic hydrazide in the presence of pyridine yielded the 1,3,5-tri-substituted-2-pyrazolines derivatives. Total 20 compounds has been synthesized and characterized by the IR, 1HNMR and mass spectral analysis. Antifungal activity of the compounds carried out onfour fungal strains i.e. Saccharomyces cerevisiae, A. Niger, C. Albicans and R. Oryzae in two different concentration i.e. 50 and 100 µg/ml by Agar-diffusion method using Cup-plate method. The usual antifungal medicine was ketoconazole. All of the synthesized 1,3,5-trisubstituted pyrazole compounds (ME1-ME8, CL1-CL8, BR1-BR4) showed medium to best action against examined organisms, according to antifungal activity data. The antifungal activity of compounds against fungal strains (Saccharomyces cerevisiae, A. Niger, Candida albicans, and R. Oryzae) revealed the following order of action: CL-4 > BR-4 > CL-3 > CL-2 > ME-3> ME-2> CL-5 > CL-6 > ME-4 > ME-5 > ME-6 > ME-7 > CL-7 > CL-8>ME-8 >CL-1 >ME-1 > CL-5 > CL-6 > ME-4 > ME-5 > ME-6 > ME-7 > CL-7 > CL-8>ME-8 >CL-1 >ME-1. Electronegative groups (Br, Cl, F, and NO2) must be present at the third and fifth positions of the 1,3,5-pyrazoline ring for significant antifungal action. The presence of an electronegative group at the third and fifth positions may be required for the best action against bacterial and fungal strains, however the addition of F, NO2 has demonstrated moderate activity, while the substitution of methyl and methoxy  groups may reduce the activity. The synthesized compounds in the BR-1 through BR-4 class are the most active.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Rodrigues de Oliveira ◽  
Ricardo de Melo Katak ◽  
Gilvan Ferreira da Silva ◽  
Osvaldo Marinotti ◽  
Olle Terenius ◽  
...  

The global increase in diseases transmitted by the vector Aedes aegypti, new and re-emerging, underscores the need for alternative and more effective methods of controlling mosquitoes. Our aim was to identify fungal strains from the Amazon rain forest that produce metabolites with larvicidal activity against Aedes aegypti. Thirty-six fungal strains belonging to 23 different genera of fungi, isolated from water samples collected in the state of Amazonas, Brazil were cultivated. The liquid medium was separated from the mycelium by filtration. Medium fractions were extracted with ethyl acetate and isopropanol 9:1 volume:volume, and the mycelia with ethyl acetate and methanol 1:1. The extracts were vacuum dried and the larvicidal activity was evaluated in selective bioassays containing 500 μg/ml of the dried fungal extracts. Larval mortality was evaluated up to 72 h. None of the mycelium extracts showed larvicidal activity greater than 50% at 72 h. In contrast, 15 culture medium extracts had larvicidal activity equal to or greater than 50% and eight killed more than 90% of the larvae within 72 h. These eight extracts from fungi belonging to seven different genera (Aspergillus, Cladosporium, Trichoderma, Diaporthe, Albifimbria, Emmia, and Sarocladium) were selected for the determination of LC50 and LC90. Albifimbria lateralis (1160) medium extracts presented the lowest LC50 value (0.268 μg/ml) after 24 h exposure. Diaporthe ueckerae (1203) medium extracts presented the lowest value of LC90 (2.928 μg/ml) at 24 h, the lowest values of LC50 (0.108 μg/ml) and LC90 (0.894 μg/ml) at 48 h and also at 72 h (LC50 = 0.062 μg/ml and LC90 = 0.476 μg/ml). Extracts from Al. lateralis (1160) and D. ueckerae (1203) showed potential for developing new, naturally derived products, to be applied in integrated vector management programs against Ae. aegypti.


Sign in / Sign up

Export Citation Format

Share Document