scholarly journals Stator q-axis voltage error based sensorless speed estimation of field oriented vector controlled induction motor without using voltage transducer

2021 ◽  
Vol 27 (2) ◽  
pp. 210-219
Author(s):  
Sadık Özdemir
2021 ◽  
Author(s):  
Rafael Mancuso Paraiso Cavalcanti ◽  
Jaqueline Bierende ◽  
Beatriz Brusamarello ◽  
Jean Carlos Cardozo Da Silva ◽  
Giovanni Alfredo Guarneri ◽  
...  

2019 ◽  
Vol 34 (3) ◽  
pp. 1432-1441 ◽  
Author(s):  
Xiangjin Song ◽  
Zhuo Wang ◽  
Shuhui Li ◽  
Jingtao Hu

2013 ◽  
Vol 62 (1) ◽  
pp. 25-41 ◽  
Author(s):  
K. Sedhuraman ◽  
S. Himavathi ◽  
A. Muthuramalingam

Abstract This paper presents a novel speed estimator using Reactive Power based Model Reference Neural Learning Adaptive System (RP-MRNLAS) for sensorless indirect vector controlled induction motor drives. The Model Reference Adaptive System (MRAS) based speed estimator using simplified reactive power equations is one of the speed estimation method used for sensor-less indirect vector controlled induction motor drives. The conventional MRAS speed estimator uses PI controller for adaptation mechanism. The nonlinear mapping capability of Neural Network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. This paper proposes the use of neural learning algorithm for adaptation in a reactive power technique based MRAS for speed estimation. The proposed scheme combines the advantages of simplified reactive power technique and the capability of neural learning algorithm to form a scheme named “Reactive Power based Model Reference Neural Learning Adaptive System” (RP-MRNLAS) for speed estimator in Sensorless Indirect Vector Controlled Induction Motor Drives. The proposed RP-MRNLAS is compared in terms of accuracy, integrator drift problems and stator resistance versions with the commonly used Rotor Flux based MRNLAS (RF-MRNLAS) for the same system and validated through Matlab/Simulink. The superiority of the RP-MRNLAS technique is demonstrated.


2006 ◽  
Vol 51 (7) ◽  
pp. 1172-1177 ◽  
Author(s):  
M. Li ◽  
J. Chiasson ◽  
M. Bodson ◽  
L.M. Tolbert

Author(s):  
Mini R ◽  
Shabana Backer P. ◽  
B. Hariram Satheesh ◽  
Dinesh M. N

<p>This paper presents a closed loop Model Reference Adaptive system (MRAS) observer with artificial intelligent Nuero fuzzy controller (NFC) as the adaptation technique to mitigate the low speed estimation issues and to improvise the performance of the Sensorless Direct Torque Controlled (DTC) Induction Motor Drives (IMD). Rotor flux MRAS and reactive power MRAS with NFC is explored and detailed analysis is carried out for low speed estimation. Comparative analysis between rotor flux MRAS and reactive power MRAS with PI as well as NFC as adaptive controller is performed and results are presented in this paper. The comparative analysis among these four speed estimation methods shows that reactive power MRAS with NFC as adaptation mechanism shows reduced speed estimation error and actual speed error at steady state operating conditions when the drive is subjected to low speed operation. Simulation carried out using MATLAB-Simulink software to validate the performance of the drive especially at low speeds with rated and variable load conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document