scholarly journals Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (Zanthoxylum piperitum): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes

2017 ◽  
Vol 34 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Yoshiyuki Fujita ◽  
Takao Koeduka ◽  
Mitsuhiro Aida ◽  
Hideyuki Suzuki ◽  
Yoko Iijima ◽  
...  
2019 ◽  
Vol 295 (6) ◽  
pp. 1598-1612 ◽  
Author(s):  
Ivette M. Menéndez-Perdomo ◽  
Peter J. Facchini

Benzylisoquinoline alkaloids (BIAs) are a major class of plant metabolites with many pharmacological benefits. Sacred lotus (Nelumbo nucifera) is an ancient aquatic plant of medicinal value because of antiviral and immunomodulatory activities linked to its constituent BIAs. Although more than 30 BIAs belonging to the 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline structural subclasses and displaying a predominant R-enantiomeric conformation have been isolated from N. nucifera, its BIA biosynthetic genes and enzymes remain unknown. Herein, we report the isolation and biochemical characterization of two O-methyltransferases (OMTs) involved in BIA biosynthesis in sacred lotus. Five homologous genes, designated NnOMT1–5 and encoding polypeptides sharing >40% amino acid sequence identity, were expressed in Escherichia coli. Functional characterization of the purified recombinant proteins revealed that NnOMT1 is a regiospecific 1-benzylisoquinoline 6-O-methyltransferase (6OMT) accepting both R- and S-substrates, whereas NnOMT5 is mainly a 7-O-methyltransferase (7OMT), with relatively minor 6OMT activity and a strong stereospecific preference for S-enantiomers. Available aporphines were not accepted as substrates by either enzyme, suggesting that O-methylation precedes BIA formation from 1-benzylisoquinoline intermediates. Km values for NnOMT1 and NnOMT5 were 20 and 13 μm for (R,S)-norcoclaurine and (S)-N-methylcoclaurine, respectively, similar to those for OMTs from other BIA-producing plants. Organ-based correlations of alkaloid content, OMT activity in crude extracts, and OMT gene expression supported physiological roles for NnOMT1 and NnOMT5 in BIA metabolism, occurring primarily in young leaves and embryos of sacred lotus. In summary, our work identifies two OMTs involved in BIA metabolism in the medicinal plant N. nucifera.


2013 ◽  
Vol 84 (1-2) ◽  
pp. 227-241 ◽  
Author(s):  
Frédéric Jullien ◽  
Sandrine Moja ◽  
Aurélie Bony ◽  
Sylvain Legrand ◽  
Cécile Petit ◽  
...  

Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kuan-Feng Huang ◽  
Yi-Ru Lee ◽  
Yen-Hsueh Tseng ◽  
Sheng-Yang Wang ◽  
Fang-Hua Chu

AbstractEleutherococcus trifoliatusalso known as the three-leavedEleutherococcus, a member of the Araliaceae (ginseng) family, is commonly used in traditional Chinese medicine. Recently, many studies have demonstrated the bioactivities of the secondary metabolites inE. trifoliatus. In this study, a monoterpene synthase fromE. trifoliatushas been characterized. A pair of degenerate primers was designed and a fragment with conserved region of terpene synthase (TPS) was obtained. After 5′- and 3′-rapid amplification of cDNA ends (RACE), the full-length cDNA was obtained. The gene designatedEtLIMcontains an open reading frame of 1752 bp with a predicated molecular mass of 67.3 kDa. It was expressed in young leaves, stems, and drupes. The product ofEtLIMhas been identified by gas chromatography/mass spectrometry (GC/MS) as limonene.


Holzforschung ◽  
2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Chi-Hsiang Wen ◽  
Yen-Hsueh Tseng ◽  
Fang-Hua Chu

Abstract In the present study, one sesquiterpene synthase gene in Eleutherococcus trifoliatus was identified and characterized. Full-length cDNA was obtained from stems. It contained an open reading frame of 1671 bp (EtCop) with a predicted molecular mass of 64.5 kDa. The amino acid sequence of EtCop contained the common terpene synthase family motifs RR(x)8W, RxR and DDxxD. The recombinant protein from Escherichia coli was incubated with farnesyl diphosphate in order to identify the function of EtCop. The product of EtCop could be identified as an α-copaene by means of gas chromatography-mass spectrometry analysis and comparison with an authentic standard.


FEBS Letters ◽  
2008 ◽  
Vol 582 (5) ◽  
pp. 565-572 ◽  
Author(s):  
Fengnian Yu ◽  
Hisashi Harada ◽  
Kazuhisa Yamasaki ◽  
Sho Okamoto ◽  
Souta Hirase ◽  
...  

2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


Sign in / Sign up

Export Citation Format

Share Document