scholarly journals BioFibGel: A Green Nanotechnology Based Wound Dressing

2021 ◽  
Vol 55 (4) ◽  
pp. 989-995
Author(s):  
Garima Shandilya ◽  
Kirtan Tarwadi ◽  
Sachin Chavan ◽  
Jai Singh Vaghela
2016 ◽  
Author(s):  
Cigdem Kilicarislan Ozkan ◽  
Hasan Ozgunay ◽  
Stefania Marin ◽  
Madalina Georgiana Albu Kaya

2018 ◽  
Vol 69 (3) ◽  
pp. 585-586 ◽  
Author(s):  
Laura Raducu ◽  
Cristina Nicoleta Cozma ◽  
Andra Elena Balcangiu Stroescu ◽  
Adelaida Avino ◽  
Maria Daniela Tanasescu ◽  
...  

Polyurethane foam has numerous applications, from furniture to medical field. As a wound dressing creates a moisture environment that promotes epithelialization and diminishes pain. A prospective study was realized to evaluate polyurethane foam efficacy in treating chronic wounds due to venous, arterial or diabetic causes. Our evaluation showed good results with an accelerated epithelialization.


2019 ◽  
Vol 25 (11) ◽  
pp. 1187-1199 ◽  
Author(s):  
Soukaina Bouissil ◽  
Guillaume Pierre ◽  
Zainab El Alaoui-Talibi ◽  
Philippe Michaud ◽  
C. El Modafar ◽  
...  

Background: Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. Methods: a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. Results: These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.


2020 ◽  
Vol 04 ◽  
Author(s):  
Sourav Mohanto ◽  
Prithviraj Chakraborty ◽  
Chidambaram Soundra Pandian ◽  
Shubhradeep Manna ◽  
Joni Dutta

Background: The design and characteristics of alginate biomaterial have a significant role in wound dressing and tissue regeneration. The ideal biomaterial for wound dressing must have biodegradable, biocompatible, non-inflammatory, non-toxic. Objective: Wound dressing should promote the re-epithelization and protect the wound for further infection by creating a moist environment. The physical and mechanical nature of the alginate biopolymer has the potential to influence the pathophysiological mechanisms in the chronic wound actively. The application of this biomaterial provides an ampule advantage to synthetic polymers. Method: The wound healing process is a critical step involved in different phases. The presence of cross-linkers, polymers along with alginate lead to a decrease in the mechanical property of dressing. Hence the effective material choosing along with alginate is a very critical decision. The therapeutic efficacy of the alginate dressing system (film, hydrogel, wafer, etc.) influenced by the incorporation of different materials such as bioactive agents, nanoparticles, cross-linker, nature of the excipients, etc. Results: The ion exchange occurring between dressing and exudates resulted in the formation of gel, due to the glucuronic acid presence in alginate. This gel absorbs moisture and maintains an appropriate moist environment and actively influence the pathophysiological mechanisms in the chronic wound. Conclusion: This review gives a detailed knowledge of the researchers to work with alginate and provides knowledge about the incorporation of the appropriate material and their therapeutic efficacy in wound dressing.


Sign in / Sign up

Export Citation Format

Share Document