crosslinking agent
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 305)

H-INDEX

40
(FIVE YEARS 9)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 470
Author(s):  
Sandra Flinčec Grgac ◽  
Jasna Jablan ◽  
Sara Inić ◽  
Rajna Malinar ◽  
Ivančica Kovaček ◽  
...  

The purpose of the research was to measure the increase in the binding of inclusion complexes β-cyclodextrin-peppermint oil (β-CD_PM) to cellulose in cotton and cotton/polyester material with BTCA as the crosslinking agent by applying an ultrasonic bath at room temperature and a frequency of 80 kHz for 10 min. After sonication, the samples were left in a bath for 24 h after which they were dried, thermocondensed and subjected to a number of wash cycles. The treated samples were analysed with Attenuated total reflection (ATR) units heated up to 300 °C (Golden Gate (FTIR-ATR)) to monitor chemical changes indicative of crosslinking, while physico-chemical changes in the samples were monitored by using Fourier transform infrared spectroscopy (FTIR-ATR). Mechanical properties were measured according to EN ISO 13934-1:1999, and coloristic changes were evaluated by the whiteness degree according to CIE (WCIE) and the yellowing index (YI), while antimicrobial activity was determined according to AATCC TM 147-2016. The results show a physico-chemical modification of the UZV-treated cellulosic material. Moreover, partial antimicrobial efficacy on Gram-negative bacteria was confirmed for treated fabrics.


2022 ◽  
pp. 088532822110527
Author(s):  
Piotr Gadziński ◽  
Tomasz Zbigniew Osmałek ◽  
Anna Froelich ◽  
Oliwia Wilmańska ◽  
Agata Nowak ◽  
...  

Purpose. In the performed study, the rheological and textural parameters of gellan-based hydrogels were investigated and their dependence on three factors was taken into consideration: ( i) The presence of the model drug, ( ii) The presence and type of the ionic crosslinking agent, and ( iii) the composition of the polymer network. The objective was to compare two analytical methods, regarded as complementary, and define to what extent the obtained results correlate with each other. Methods. The hydrogels contained low-acyl gellan gum or its mixtures with hydroxyethyl cellulose or κ-carrageenan. CaCl2 and MgCl2 were used as gelling agents. Mesalazine was used as a model drug. The rheological analysis included oscillatory stress and frequency sweeping. The texture profile analysis was performed to calculate texture parameters. Results. Placebo gels without the addition of gelling agents had the weakest structure. The drug had the strongest ability to increase the stiffness of the polymer network. The weakest structure revealed the placebo samples without the addition of gelling agents. Texture analysis revealed no significant influence of the drug on the strength of the gels, while rheological measurements indicated clear differences. Conclusions. It can be concluded that in the case of some parameters methods correlate, that is, the effect related to gelling ions. However, the rheological analysis seems to be more precise and sensitive to some changes in the mechanical properties of the gels.


2022 ◽  
pp. 088532822110580
Author(s):  
Andrew Baldwin ◽  
Brian W Booth

Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 44
Author(s):  
Jomarien García-Couce ◽  
Miriela Tomás ◽  
Gastón Fuentes ◽  
Ivo Que ◽  
Amisel Almirall ◽  
...  

Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiaqi Hu ◽  
Lu Ding ◽  
Jing Chen ◽  
Jinhua Fu ◽  
Kang Zhu ◽  
...  

AbstractHerein, we reported a new dynamic light scattering (DLS) immunosensing technology for the rapid and sensitive detection of glycoprotein N-terminal pro-brain natriuretic peptide (NT-proBNP). In this design, the boronate affinity recognition based on the interaction of boronic acid ligands and cis-diols was introduced to amplify the nanoparticle aggregation to enable highly sensitive DLS transduction, thereby lowering the limit of detection (LOD) of the methodology. After covalently coupling with antibodies, magnetic nanoparticles (MNPs) were employed as the nanoprobes to selectively capture trace amount of NT-proBNP from complex samples and facilitate DLS signal transduction. Meanwhile, silica nanoparticles modified with phenylboronic acid (SiO2@PBA) were designed as the crosslinking agent to bridge the aggregation of MNPs in the presence of target NT-proBNP. Owing to the multivalent and fast affinity recognition between NT-proBNP containing cis-diols and SiO2@PBA, the developed DLS immunosensor exhibited charming advantages over traditional immunoassays, including ultrahigh sensitivity with an LOD of 7.4 fg mL−1, fast response time (< 20 min), and small sample consumption (1 μL). The DLS immunosensor was further characterized with good selectivity, accuracy, precision, reproducibility, and practicability. Collectively, this work demonstrated the promising application of the designed boronate affinity amplified-DLS immunosensor for field or point-of-care testing of cis-diol-containing molecules. Graphical Abstract


e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 99-107
Author(s):  
Chen Ding ◽  
Ning Li ◽  
Zhikang Chen ◽  
Yufei Zhang

Abstract In this study, kraft lignin and epichlorohydrin (ECH) were used to prepare no-formaldehyde wood adhesives. The lignin was first treated by ball milling, then reacted with glyoxal to produce glyoxalated lignin under alkaline conditions, and then blended with ECH to prepare lignin-based formaldehyde-free adhesive. The influence of the content of ECH on the physicochemical properties of the adhesives was explored, and the possible synthesis mechanism of the ECH-modified glyoxalated lignin adhesives (glyoxalated kraft lignin-epoxy [GKLE]) was investigated. The results show that ECH was beneficial to improving the plywood shear strength and water resistance; the plywood prepared with GKLE-50 adhesive displays comparable water resistance as phenol–formaldehyde resins and its wet shear strength (type I) was 1.05 MPa, exceeding the Chinese National Standards GB/T 9846-2015. Scanning electron microscopy analysis showed that the increase of ECH content promoted the adhesive to penetrate the wood to form glue nails, improving the wet shear strength of the plywood. Chemical analysis indicated that glyoxalation was used to introduce hydroxyethyl groups into the ortho positions of the aromatic rings of lignin, and then the ring-opening reaction between glyoxalated lignin and ECH occurred forming ether bonds. Overall, lignin has displayed great potential in replacing formaldehyde-based adhesives for industrial applications.


2022 ◽  
Vol 334 ◽  
pp. 04002
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Boštjan Genorio ◽  
Viktor Hacker ◽  
Sigrid Wolf ◽  
...  

The paper reports on the processing of chitosan N-doped reduced graphene oxide (CS/N-rGO) nanocomposite membranes prepared by a facile, dispersion-casting procedure aimed as anion exchange membranes in fuel cells. Genipin (GEN) was used as a crosslinking agent to ameliorate mechanical weakens of nanocomposite membranes, while the N-rGO filler, aside of its role as a mechanical enhancer, is expected to improve the ionic conductivity of membranes. The resulting properties of processed membranes in terms of morphology, tensile strength, elasticity, and ethanol permeability were examined. The relevance of the membranes in terms of efficiency and performance was demonstrated in a single cell test.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Abigail R. Ward ◽  
Sara Dmytriw ◽  
Ananya Vajapayajula ◽  
Christopher D. Snow

Protein and DNA co-crystals are most commonly prepared to reveal structural and functional details of DNA-binding proteins when subjected to X-ray diffraction. However, biomolecular crystals are notoriously unstable in solution conditions other than their native growth solution. To achieve greater application utility beyond structural biology, biomolecular crystals should be made robust against harsh conditions. To overcome this challenge, we optimized chemical DNA ligation within a co-crystal. Co-crystals from two distinct DNA-binding proteins underwent DNA ligation with the carbodiimide crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) under various optimization conditions: 5′ vs. 3′ terminal phosphate, EDC concentration, EDC incubation time, and repeated EDC dose. This crosslinking and DNA ligation route did not destroy crystal diffraction. In fact, the ligation of DNA across the DNA–DNA junctions was clearly revealed via X-ray diffraction structure determination. Furthermore, crystal macrostructure was fortified. Neither the loss of counterions in pure water, nor incubation in blood serum, nor incubation at low pH (2.0 or 4.5) led to apparent crystal degradation. These findings motivate the use of crosslinked biomolecular co-crystals for purposes beyond structural biology, including biomedical applications.


2021 ◽  
pp. 004051752110678
Author(s):  
Ting Liang ◽  
Kelu Yan ◽  
Tao Zhao ◽  
Bolin Ji

A novel multiple-reactive-site crosslinking agent, P(TAA‒AA), was developed from transaconitic acid and acrylic acid in this study. Cotton fabrics with durable wrinkle-resistant properties were obtained by crosslinking with P(TAA‒AA), which benefited from the multifunctional carboxyl groups of crosslinking agents and the three-dimensional crosslinking inside cotton fibers. The wrinkle-resistant properties of P(TAA‒AA)-modified fabrics were evaluated and compared with those of other polycarboxylic acid-treated fabrics, and the P(TAA‒AA)-modified fabrics showed a wrinkle recovery angle of 262° as high as the 1,2,3,4-butanetetracarboxylic acid-modified fabrics while maintaining nearly two-fold higher tearing strength retention (62.9%), and they showed a much higher value of whiteness index than the citric acid-modified fabrics. This demonstrated that the obtained P(TAA‒AA) is an ideal polycarboxylic acid already known to date simultaneously to realize the high wrinkle recovery angle and high tearing strength retention for treated cotton fabrics. The Raman depth mapping images and the scanning electron microscope images of P(TAA‒AA)-modified samples indicated that P(TAA‒AA) molecules can diffuse into the amorphous regions of the cellulose fibers and form crosslinking bridges between cellulose chains. The multiple reactive carboxyl groups in P(TAA‒AA) may form three or more ester bonds between the P(TAA‒AA) molecule and different cellulose chains, which were regarded as the main contribution to the high crosslinking effectiveness of the P(TAA‒AA)-modified fabrics.


Author(s):  
Yuejia Li ◽  
Wei Pan ◽  
Fenghua Zhang ◽  
Jinsong Leng

Shape memory polymers (SMPs) are smart materials that can be programmed to change shape under external stimuli, whereas the low storage modulus limit the application of them. Herein, carbon fabric (CF) reinforced shape memory polyimide composites (SMPICs) with high storage modulus were manufactured via hot pressing molding process. Firstly, we synthesized one kind of thermoplastic shape memory polyimide (SMPI) with glass transition temperature of 205°C by the two-step high-temperature solution polycondensation. In addition, the triamine was added in the SMPI system as a crosslinking agent to form the thermosetting SMPI with different crosslinking degree. In order to improve the storage modulus of SMPI, the CFs with three layers were embedded in thermosetting SMPI matrix. The storage modulus of the obtained SMPICs was as high as 26 GPa. The glass transition temperature and thermal decomposition temperature of SMPICs were up to 213°C and 505°C, respectively. Moreover, the shape fixation rate and recovery rate of SMPICs were both more than 94%. These SMPICs with high storage modulus is of great significance, proving more application potential in many fields such as aerospace.


Sign in / Sign up

Export Citation Format

Share Document