scholarly journals Security of Broadcast Authentication for Cloud-Enabled Wireless Medical Sensor Devices in 5G Networks

2020 ◽  
Vol 13 (2) ◽  
pp. 13
Author(s):  
Abdullah Al Hayajneh ◽  
Md Zakirul Alam Bhuiyan ◽  
Ian McAndrew

Wireless Body Area Network (WBAN) has become one of the fastest growing technologies nowadays. There are some characteristic limitations in WBAN, especially when it comes to health-related applications that are used to monitor human bodies. To overcome and mitigate theses limitations in WBAN, cloud computing technology can be combined with the WBAN as a solution. We can classify the WBAN sensors in the cloud-based WBAN into i) nodes that monitor the human body and ii) WBAN actuators that take action upon the order commands from the medical staff. The biggest concern is the security of the medical commands to the WBAN actuators because if they are altered or tampered with, there can be serious consequences. Therefore, authentication plays an important role in securing cloud-based WBANs. In this article, we explore the security and privacy issues of Wireless Body Area Network combined with Mobile Cloud Computing (wMCC) with 5G mobile networks and investigate public-key based security solutions. At first, the paper presents a detailed description of wMCC architecture, discussing its main advantages and limitations. The main features of 5G mobile network are then presented, focusing on the advancement it may provide if integrated with wMCC systems. We further investigate the security issues of wMCC with 5G mobile networks while emphasizing the challenges that face this system in healthcare applications. The authentication techniques in wMCC are then classified and discussed with the feasibility of deploying practical solutions. Finally, we outline the main challenges and metrics of an ideal authentication protocols to be used in wMCC with 5G. The metrics are helpful for researchers in this field to evaluate, analyze, and compare the authentication protocols to decide the suitable application for each protocol.

2021 ◽  
Vol 9 (1) ◽  
pp. 71-79
Author(s):  
Jacqualine Cristhy Ujil

The recent advancements in technologies have allowed us to come so far and resulted in many breakthroughs. One of the various examples is internet of things, wireless communication, and cloud computing which can be useful if utilize in many fields. In the field of medical, these advancements allowed any medical centres to improve patient’s health remotely simply by using wearable devices on patients that then will amalgamate with the wireless body area network (WBAN). However, WBAN has limited resources which limits its services. To solve this problem, cloud computing is used to provide storage and computation. Unfortunately, these methods allow the system to be vulnerable to various malicious attacks. Attackers can easily gain access to the medical records of patients hence the integrity of security and privacy of confidential data have been compromised. In this paper, we presented a secure protocol for cloud-assisted database using multi-factor authentication and blockchain as an added measure to ensure security. Accordingly, we prove that the presented scheme offers more security and privacy. Therefore, it is the most practical method to be applied in the medical field.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 11413-11422 ◽  
Author(s):  
Taiyang Wu ◽  
Fan Wu ◽  
Jean-Michel Redoute ◽  
Mehmet Rasit Yuce

Author(s):  
S. M. Ghatole and P. B. Dahikar S. M. Ghatole and P. B. Dahikar ◽  

Author(s):  
Muhammad Sheraz Arshad Malik ◽  
Muhammad Ahmed ◽  
Tahir Abdullah ◽  
Naila Kousar ◽  
Mehak Nigar ◽  
...  

2021 ◽  
Author(s):  
N Arun Vignesh ◽  
Kanithan S ◽  
Jana S ◽  
Gokul Prasad C ◽  
Konguvel E ◽  
...  

Abstract We propose in this paper a reduction in the size of wearable antennas on silicon (Si) for medicinal frameworks and Internet of things (IoT). This research also introduces one more type of dynamic patch antenna designed in favor of speech-enhanced healthcare applications. The most significant impediment to the adoption of smart correspondence and medical services frameworks is voice-enabled IoT. The primary objective of a body area network (BAN) is to give ceaselessly clinical information to the doctors. Actually wireless body area network is flexible, dense, trivial and less expensive. On the other hand the main disadvantage is low efficiency for small printed antenna. Microstrip silicon antenna recurrence is changed because of ecological conditions, distinctive reception apparatus areas and diverse framework activity modes. By using tunable antenna the efficiency of bandwidth usage can be increased. Amplifiers are associated with the feed line of antenna in order to build its dynamic range. In this study, a dynamic polarized antenna is constructed, analysed and attempted for fabrication. The gain of the antenna is 13 ± 2dB for the frequency range of 390 to 610MHz. The output of the polarized antenna is roughly 19 dBm. At different environmental conditions the performance and ability to control the antenna could vary. To achieve stable performance, we have used varactor diode and voltage controlled diode. This silicon wearable antenna can be fabricated and tested for many medical applications like health monitoring system, pacemakers etc. Furthermore, Micromachining techniques can be used to lower the practical dielectric constant of Silicon and hence improve radiation efficiency.


2018 ◽  
Vol 31 (1) ◽  
pp. 260 ◽  
Author(s):  
Hasan Falah Hasan

  E-Health care system is one of the great technology enhancements via using medical devices through sensors worn or implanted in the patient's body. Wireless Body Area Network (WBAN) offers astonishing help through wireless transmission of patient's data using agreed distance in which it keeps patient's status always controlled by regular transmitting of vital data indications to the receiver. Security and privacy is a major concern in terms of data sent from WBAN and biological sensors. Several algorithms have been proposed through many hypotheses in order to find optimum solutions. In this paper, an encrypting algorithm has been proposed via using hyper-chaotic Zhou system where it provides high security, privacy, efficiency and capacity in terms of long key space that ensures high resistance possibly obtained by any threat attack, key sensitivity is too high to any slight of change could be made in the encryption key and finally good statistical characteristic's analysis where the software has been used is microsoft visual studio version 10


Author(s):  
Srijan Goswami ◽  
Payel Roy ◽  
Nilanjan Dey ◽  
Sayan Chakraborty

This chapter introduces the combination of wireless body area network and mobile cloud computing in healthcare. The increased growth of low-power integrated circuits, physiological sensors and wireless communication has introduced a new generation of wireless sensor networks. Cloud computing is on high demand, whereas in case of mobile cloud computing the device is much more user friendly to manage the information. The combination of wireless body area network (WBAN) and mobile cloud computing (MCC) promises a better performance to the users immediately. It is more feasible to wire a sensor which performs the required medical tests and provides the information through devices like mobile phones and tablets. In this chapter, a theoretical study on the combination of WBAN and mobile cloud computing has been done.


2019 ◽  
Vol 5 (11) ◽  
pp. 22-28
Author(s):  
Vineeta Shrivastava ◽  
Mayank Namdev

Wireless Body Area Network (WBAN) is a new trend in the technology that provides remote mechanism to monitor and collect patient’s health record data using wearable sensors. It is widely recognized that a high level of system security and privacy play a key role in protecting these data when being used by the healthcare professionals and during storage to ensure that patient’s records are kept safe from intruder’s danger. It is therefore of great interest to discuss security and privacy issues in WBANs. In this paper, we reviewed WBAN communication architecture, security and privacy requirements and security threats and the primary challenges in WBANs to these systems based on the latest standards and publications. This paper also covers the state-of-art security measures and research in WBAN.


Sign in / Sign up

Export Citation Format

Share Document