scholarly journals A Secure Two Factor Authentication Protocol for Cloud-Assisted Wireless Body Area Network Using Blockchain

2021 ◽  
Vol 9 (1) ◽  
pp. 71-79
Author(s):  
Jacqualine Cristhy Ujil

The recent advancements in technologies have allowed us to come so far and resulted in many breakthroughs. One of the various examples is internet of things, wireless communication, and cloud computing which can be useful if utilize in many fields. In the field of medical, these advancements allowed any medical centres to improve patient’s health remotely simply by using wearable devices on patients that then will amalgamate with the wireless body area network (WBAN). However, WBAN has limited resources which limits its services. To solve this problem, cloud computing is used to provide storage and computation. Unfortunately, these methods allow the system to be vulnerable to various malicious attacks. Attackers can easily gain access to the medical records of patients hence the integrity of security and privacy of confidential data have been compromised. In this paper, we presented a secure protocol for cloud-assisted database using multi-factor authentication and blockchain as an added measure to ensure security. Accordingly, we prove that the presented scheme offers more security and privacy. Therefore, it is the most practical method to be applied in the medical field.

2020 ◽  
Vol 13 (2) ◽  
pp. 13
Author(s):  
Abdullah Al Hayajneh ◽  
Md Zakirul Alam Bhuiyan ◽  
Ian McAndrew

Wireless Body Area Network (WBAN) has become one of the fastest growing technologies nowadays. There are some characteristic limitations in WBAN, especially when it comes to health-related applications that are used to monitor human bodies. To overcome and mitigate theses limitations in WBAN, cloud computing technology can be combined with the WBAN as a solution. We can classify the WBAN sensors in the cloud-based WBAN into i) nodes that monitor the human body and ii) WBAN actuators that take action upon the order commands from the medical staff. The biggest concern is the security of the medical commands to the WBAN actuators because if they are altered or tampered with, there can be serious consequences. Therefore, authentication plays an important role in securing cloud-based WBANs. In this article, we explore the security and privacy issues of Wireless Body Area Network combined with Mobile Cloud Computing (wMCC) with 5G mobile networks and investigate public-key based security solutions. At first, the paper presents a detailed description of wMCC architecture, discussing its main advantages and limitations. The main features of 5G mobile network are then presented, focusing on the advancement it may provide if integrated with wMCC systems. We further investigate the security issues of wMCC with 5G mobile networks while emphasizing the challenges that face this system in healthcare applications. The authentication techniques in wMCC are then classified and discussed with the feasibility of deploying practical solutions. Finally, we outline the main challenges and metrics of an ideal authentication protocols to be used in wMCC with 5G. The metrics are helpful for researchers in this field to evaluate, analyze, and compare the authentication protocols to decide the suitable application for each protocol.


Author(s):  
Muhammad Sheraz Arshad Malik ◽  
Muhammad Ahmed ◽  
Tahir Abdullah ◽  
Naila Kousar ◽  
Mehak Nigar ◽  
...  

2018 ◽  
Vol 31 (1) ◽  
pp. 260 ◽  
Author(s):  
Hasan Falah Hasan

  E-Health care system is one of the great technology enhancements via using medical devices through sensors worn or implanted in the patient's body. Wireless Body Area Network (WBAN) offers astonishing help through wireless transmission of patient's data using agreed distance in which it keeps patient's status always controlled by regular transmitting of vital data indications to the receiver. Security and privacy is a major concern in terms of data sent from WBAN and biological sensors. Several algorithms have been proposed through many hypotheses in order to find optimum solutions. In this paper, an encrypting algorithm has been proposed via using hyper-chaotic Zhou system where it provides high security, privacy, efficiency and capacity in terms of long key space that ensures high resistance possibly obtained by any threat attack, key sensitivity is too high to any slight of change could be made in the encryption key and finally good statistical characteristic's analysis where the software has been used is microsoft visual studio version 10


Author(s):  
Srijan Goswami ◽  
Payel Roy ◽  
Nilanjan Dey ◽  
Sayan Chakraborty

This chapter introduces the combination of wireless body area network and mobile cloud computing in healthcare. The increased growth of low-power integrated circuits, physiological sensors and wireless communication has introduced a new generation of wireless sensor networks. Cloud computing is on high demand, whereas in case of mobile cloud computing the device is much more user friendly to manage the information. The combination of wireless body area network (WBAN) and mobile cloud computing (MCC) promises a better performance to the users immediately. It is more feasible to wire a sensor which performs the required medical tests and provides the information through devices like mobile phones and tablets. In this chapter, a theoretical study on the combination of WBAN and mobile cloud computing has been done.


2020 ◽  
Vol 6 (11) ◽  
pp. 48-53
Author(s):  
Vineeta Shrivastava ◽  
Mayank Namdev

Now-a-days ireless Body Area Network (WBAN) is considered to be new era technique in which patient’s health record are monitored remotely by using wearable sensors from anywhere in the world. In such high-level communication, there is need of security services are required to protect the data being used by healthcare professionals and patients from intruders or attackers. Therefore, many researchers are showing their keen interest for security enhancement of WBAN architecture for secure communication. In this dissertation work, different security and privacy techniques are reviewed and analysed WBAN/IoT challenges as well their limitations based on the latest standards and publications. This research also covers the state-of-art security measures and research in WBAN. This research presents an ElGamal cryptosystem and biometric information authentication scheme for WBAN/IOT applications. This work observed that most of the authentication protocols using hash function and ElGamal cryptosystem for cloud-based applications are affected by security attacks and are unable to hide the actual identities of the end users during login session. Therefore, this work has introduced a secure biometric ElGamal-based authentication as well as data sharing schemes. The result analysis shows that the proposed work is better with respect to existing work with respect to execution time and cost as well as security level.


Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


Sign in / Sign up

Export Citation Format

Share Document