scholarly journals Motivic Hypercohomology Solutions in Field Theory and Applications in H-States

2021 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Francisco Bulnes

Triangulated derived categories are considered which establish a commutative scheme (triangle) for determine or compute a hypercohomology of motives for the obtaining of solutions of the field equations. The determination of this hypercohomology arises of the derived category $\textup{DM}_{\textup {gm}}(k)$,  which is of the motivic objects whose image is under $\textup {Spec}(k)$  that is to say, an equivalence of the underlying triangulated tensor categories, compatible with respective functors on $\textup{Sm}_{k}^{\textup{Op}}$. The geometrical motives will be risked with the moduli stack to holomorphic bundles. Likewise, is analysed the special case where complexes $C=\mathbb{Q}(q)$,  are obtained when cohomology groups of the isomorphism $H_{\acute{e}t}^{p}(X,F_{\acute{e}t})\cong (X,F_{Nis})$,   can be vanished for  $p>\textup{dim}(Y)$.  We observe also the Beilinson-Soul$\acute{e}$ vanishing  conjectures where we have the vanishing $H^{p}(F,\mathbb{Q}(q))=0, \ \ \textup{if} \ \ p\leq0,$ and $q>0$,   which confirms the before established. Then survives a hypercohomology $\mathbb{H}^{q}(X,\mathbb{Q})$. Then its objects are in $\textup{Spec(Sm}_{k})$.  Likewise, for the complex Riemannian manifold the integrals of this hypercohomology are those whose functors image will be in $\textup{Spec}_{H}\textup{SymT(OP}_{L_{G}}(D))$, which is the variety of opers on the formal disk $D$, or neighborhood of all point in a surface $\Sigma$.  Likewise, will be proved that $\mathrm{H}^{\vee}$,  has the decomposing in components as hyper-cohomology groups which can be characterized as H- states in Vec$_\mathbb{C}$, for field equations $d \textup{da}=0$,  on the general linear group with $k=\mathbb{C}$.  A physics re-interpretation of the superposing, to the dual of the spectrum $\mathrm{H}^{\vee}$,  whose hypercohomology is a quantized version of the cohomology space $H^{q}(Bun_{G},\mathcal{D}^{s})=\mathbb{H}^{q}_{G[[z]]}(\mathrm{G},(\land^{\bullet}[\Sigma^{0}]\otimes \mathbb{V}_{critical},\partial))$ is the corresponding deformed derived category for densities $\mathrm{h} \in \mathrm{H}$, in quantum field theory.

2018 ◽  
Vol 14 (2) ◽  
pp. 7880-7892
Author(s):  
Francisco Bulnes

The integral geometry methods are the techniques could be the more naturally applied to study of the characterization of the moduli stacks and solution classes (represented cohomologically) obtained under the study of the kernels of the differential operators of the corresponding field theory equations to the space-time. Then through a functorial process a classification of differential operators is obtained through of the co-cycles spaces that are generalized Verma modules to the space-time, characterizing the solutions of the field equations. This extension can be given by a global Langlands correspondence between the Hecke sheaves category on an adequate moduli stack and the holomorphic bundles category with a special connection (Deligne connection). Using the classification theorem given by geometrical Langlands correspondences are given various examples on the information that the geometrical invariants and dualities give through moduli problems and Lie groups acting.


Author(s):  
D. Huybrechts

Based on the work of Orlov, Kawamata, and others, this chapter shows that the (numerical) Kodaira dimension and the canonical ring are preserved under derived equivalence. The same techniques can be used to derive the invariance of Hochschild cohomology under derived equivalence. Going one step further, it is shown that the nefness of the canonical bundle is detected by the derived category. The chapter also studies the relation between derived and birational (or rather K-) equivalence. The special case of a central conjecture predicts that two birational Calabi-Yau varieties have equivalent derived categories.


Author(s):  
P. O. Gneri ◽  
M. Jardim ◽  
D. D. Silva

Let [Formula: see text] be small category and [Formula: see text] an arbitrary category. Consider the category [Formula: see text] whose objects are functors from [Formula: see text] to [Formula: see text] and whose morphisms are natural transformations. Let [Formula: see text] be another category, and again, consider the category [Formula: see text]. Now, given a functor [Formula: see text] we construct the induced functor [Formula: see text]. Assuming [Formula: see text] and [Formula: see text] to be abelian categories, it follows that the categories [Formula: see text] and [Formula: see text] are also abelian. We have two main goals: first, to find a relationship between the derived category [Formula: see text] and the category [Formula: see text]; second relate the functors [Formula: see text] and [Formula: see text]. We apply the general results obtained to the special case of quiver sheaves.


2018 ◽  
Vol 154 (7) ◽  
pp. 1362-1406 ◽  
Author(s):  
Alexander Kuznetsov ◽  
Alexander Perry

We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the derived category of such a variety, we isolate a special semiorthogonal component, which is a K3 or Enriques category according to whether the dimension of the variety is even or odd. We analyze the basic properties of this category using Hochschild homology, Hochschild cohomology, and the Grothendieck group. We study the K3 category of a Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to the derived category of a K3 surface for a certain codimension 1 family of rational Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a certain codimension 3 family. The first of these results verifies a special case of a duality conjecture which we formulate. We discuss our results in the context of the rationality problem for Gushel–Mukai varieties, which was one of the main motivations for this work.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


1978 ◽  
Vol 33 (4) ◽  
pp. 398-401 ◽  
Author(s):  
S. J. Aldersley

The notions of conservation of charge and dimensional consistency are used to obtain conditions which uniquely characterize the field equations of electromagnetism and gravitation in a metric-affine gravitational framework with a vector potential. Conditions for the uniqueness of the choice of field equations of a metric-affine gravitational theory (in the absence of electromagnetism) follow as a special case. Some consequences are discussed.


2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document