scholarly journals Solving Liouville-type Problems on Manifolds with Poincaré-Sobolev Inequality by Broadening q-Energy from Finite to Infinite

2017 ◽  
Vol 9 (4) ◽  
pp. 1
Author(s):  
Lina Wu

The aim of this article is to investigate Liouville-type problems on complete non-compact Riemannian manifolds with Poincaré-Sobolev Inequality. Two significant technical breakthroughs are demonstrated in research findings. The first breakthrough is an extension from non-flat manifolds with non-negative Ricci curvatures to curved manifolds with Ricci curvatures varying among negative values, zero, and positive values. Poincaré-Sobolev Inequality has been applied to overcome difficulties of an extension on manifolds. Poincaré-Sobolev Inequality has offered a special structure on curved manifolds with a mix of Ricci curvature signs. The second breakthrough is a generalization of $q$-energy from finite to infinite. At this point, a technique of $p$-balanced growth has been introduced to overcome difficulties of broadening from finite $q$-energy in $L^q$ spaces to infinite $q$-energy in non-$L^q$ spaces. An innovative computational method and new estimation techniques are illustrated. At the end of this article, Liouville-type results including vanishing properties for differential forms and constancy properties for differential maps have been verified on manifolds with Poincaré-Sobolev Inequality approaching to infinite $q$-energy growth.

2019 ◽  
Vol 22 (06) ◽  
pp. 1950057
Author(s):  
Zongming Guo ◽  
Fangshu Wan ◽  
Liping Wang

New embeddings of weighted Sobolev spaces are established. Using such embeddings, we obtain the existence and regularity of positive solutions with Navier boundary value problems for a weighted fourth-order elliptic equation. We also obtain Liouville type results for the related equation. Some problems are still open.


2005 ◽  
Vol 57 (2) ◽  
pp. 251-266
Author(s):  
M. Cocos

AbstractThe present paper is concerned with the study of the L2 cohomology spaces of negatively curved manifolds. The first half presents a finiteness and vanishing result obtained under some curvature assumptions, while the second half identifies a class of metrics having non-trivial L2 cohomology for degree equal to the half dimension of the space. For the second part we rely on the existence and regularity properties of the solution for the heat equation for forms.


Sign in / Sign up

Export Citation Format

Share Document