scholarly journals Natural Convection and Radiation Heat Loss from Open Cavities of Different Shapes and Sizes Used with Dish Concentrator

2013 ◽  
Vol 3 (1) ◽  
pp. 25 ◽  
Author(s):  
R. D. Jilte ◽  
S. B. Kedare ◽  
J. K. Nayak

Numerical three dimensional studies of the combined natural convection and radiation heat loss from downward facing open cavity receiver of different shapes is carried out in this paper. The investigation is undertaken in two categories: same inner heat transfer area and aperture area (case I) and same aspect ratio and aperture area (case II). These studies are carried out for five isothermal wall temperatures (523 to 923 K in steps of 100K). The effect of inclination is studied for seven inclinations from 0° (cavity aperture facing sideways) to 90° (cavity aperture facing down), in steps of 15°. The cavity shapes used are: cylindrical, conical (frustum of a cone), cone-cylindrical (combination of frustum of cone and cylindrical shape), dome-cylindrical (combination of hemispherical and cylindrical shape), hetro-conical, reverse-conical (frustum of a cone in the reverse orientation) and spherical. For both cases, conical cavity yields the lowest convective loss among the cavities investigated whereas spherical cavity results in the highest convective loss. Convective heat loss from cavities of different shapes and sizes are characterized by using different internal zone areas of the cavity (Acw, Acz, Acb and Aw). Acb is found to be better parameter for characterization of the convective heat loss. Nusselt number correlation is developed using convective zone area (Acb). It correlates 91% of data within ±11% deviation, 99% of data within ±16% deviation. Radiative losses (Qrad) have been determined numerically from cavities of both cases. The ratio of Qrad/Aap is found to be more or less constant (variation within 5%) for all types of cavities and for 0 ? epsilon ? 1. Thus radiative loss is dependent on aperture area and effective emissivity of cavity rather than the shape of the cavity. Further, it also matches well with the analytical formula based on effective emissivity.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics (CFD) software packages fluent 13.0 and solidworks flow simulation 2011 against experimentally measured heat losses for a heated cubical cavity receiver model (Kraabel, 1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and a cylindrical dish receiver model (Taumoefolau et al., 2004, “Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver,” ASME J. Sol. Energy Eng., 126(2), pp. 801–807). Simulated convective heat loss was underpredicted by 45% for the cubical cavity when experimental wall temperatures were implemented as isothermal boundary conditions and 32% when the experimental power was applied as a uniform heat flux from the cavity walls. Agreement between software packages was generally within 10%. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except when the cavity was inclined at angles below 15 deg and above 75 deg, where losses were under- and overpredicted by fluent and solidworks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Kraabel (1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and for individual heated flat plates oriented to the cavity geometry (Pitts and Sissom, 1998, Schaum's Outline of Heat Transfer, 2nd ed., McGraw Hill, New York, p. 227) predicted heat losses from the cubical cavity to within experimental uncertainties. Correlations by Clausing (1987, “Natural Convection From Isothermal Cubical Cavities With a Variety of Side-Facing Apertures,” ASME J. Heat Transfer, 109(2), pp. 407–412) and Paitoonsurikarn et al. (2011, “Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications,” ASME J. Sol. Energy Eng. 133(2), p. 021004) were able to do the same for the cylindrical dish receiver. No single correlation was valid for both experimental receivers. The effect of different turbulence and air-property models within fluent were also investigated and compared in this study. However, no model parameter was found to produce a change large enough to account for the deficient convective heat loss simulated for the cubical cavity receiver case.


Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics software packages FLUENT 13.0 and SolidWorks Flow Simulation 2011 against experimentally measured heat losses for a heated cubical cavity model [1] and a cylindrical dish receiver model [2]. Agreement within 10% was found between software packages across most simulations. However, simulated convective heat loss was under predicted by 45% for the cubical cavity when experimental wall temperatures were implemented on cavity walls, and 32% when implementing the experimental heat flux from the cavity walls. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except at inclination angles below 15° and above 75°, where losses were under- and over-predicted by FLUENT and SolidWorks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Siebers and Kraabel [1] and for an assembly of heated flat plates oriented to the cavity geometry [3] predicted heat losses from the cubical cavity within experimental uncertainties, while correlations by Clausing [4] and Paitoonsurikarn et al. [8] were able to do the same for the cylindrical dish receiver. No single correlation was valid for both receiver models. Different turbulence and air-property models within FLUENT were also investigated and compared in this study.


Author(s):  
Shivam Kumara ◽  
Dadasaheb Jagannath Shendageb ◽  
Prafulla Doke b ◽  
Shireesh Balwant Kedare a ◽  
Shridhar Laxman Bapat

2010 ◽  
Vol 15 (3) ◽  
pp. 287-298
Author(s):  
T. Akhter ◽  
M. A. Alim

The effects of pressure work with radiation heat loss on natural convection flow on a sphere have been investigated in this paper. The governing boundary layer equations are first transformed into a non-dimensional form and the resulting nonlinear partial differential equations are then solved numerically using finite-difference method with Keller-box scheme. We have focused our attention on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically and tabular form for some selected values of parameters set consisting of radiation parameter Rd, pressure work parameter Ge, surface temperature parameter θw and the Prandtl number Pr.


2021 ◽  
pp. 103007
Author(s):  
Qiliang Wang ◽  
Yao Yao ◽  
Mingke Hu ◽  
Jingyu Cao ◽  
Yu Qiu ◽  
...  

Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 496-505 ◽  
Author(s):  
Muhammad Uzair ◽  
Timothy N. Anderson ◽  
Roy J. Nates

Sign in / Sign up

Export Citation Format

Share Document