scholarly journals Closed-Form Solution for the Solow Model with Constant Migration

2015 ◽  
Vol 16 (2) ◽  
pp. 147
Author(s):  
João Plínio Juchem Neto ◽  
Julio Cesar Ruiz Claeyssen ◽  
Daniele Ritelli ◽  
Giovanni Mingari Scarpello

In this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate I. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining.

1992 ◽  
Vol 59 (1) ◽  
pp. 234-235 ◽  
Author(s):  
Ugˇur Gu¨ven

Transverse, axisymmetric vibrations of a rotating disk of uniform strength is studied. Closed-form solution for the equation of transverse motion is obtained in terms of confluent hypergeometric functions.


2016 ◽  
Vol 38 (2) ◽  
pp. 764
Author(s):  
João Plínio Juchem Neto ◽  
Julio Cesar Ruiz Claeyssen ◽  
Daniele Ritelli ◽  
Giovanni Mingari Scarpello

This paper considers a Solow-Swan economic growth model with the labor force ruled by the logistic equation added by a constant migration rate, I. We prove the global asymptotic stability of the capital and production per capita. Considering a Cobb-Douglas production function, we show this model to have a closed-form solution, which is expressed in terms of the Beta and Appell F1 special functions. We also show, through simulations, that if I>0, it implies in a smaller capital and product per capita in the short term, but in a higher  capital and product per capita in the middle and long terms. In both cases, these per capita variables converge to the same steady-state given by the model without migration. If I<0 the transient behavior is the opposite. Finally, if I=0, we recover the solution for the pure logistic case, involving Gauss' Hypergeometric Function 2F1.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Author(s):  
Puneet Pasricha ◽  
Anubha Goel

This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document