scholarly journals ON A CLASS OF POLYA PROPERTY PRESERVING OPERATORS

2020 ◽  
Vol 27 (4) ◽  
pp. 301-313
Author(s):  
CHIU-CHENG CHANG

In this paper, we show that every continuous linear operator from H(OmegawXOmegaz) to H (OmegawxOmegaxi) has an integral representation with a kernel function M(z, w, xi). We give two sufficient conditions on M(z,w,() to ensure that its corresponding operator preserves Polya property. We also prove that a continuous linear operator from H(fl,,, x ) to H(! x S2() either preserves the Polya property for all functions with that property or does not preserve the Polya property for any function.

1972 ◽  
Vol 7 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Joe Howard ◽  
Kenneth Melendez

A locally convex topological vector (LCTV) space E is said to have property V (Dieudonné property) if for every complete separated LCTV space F, every unconditionally converging (weakly completely continuous) operator T: E → F is wsakly compact. First, an investigation of the permanence of property V is given. The permanence of the Dieudonné is analogous. Relationships between property V and the Dieudonné property are then given.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


Author(s):  
LUIGI ACCARDI ◽  
UN CIG JI ◽  
KIMIAKI SAITÔ

In this paper, we give a relationship between the exotic Laplacians and the Lévy Laplacians in terms of the higher-order derivatives of white noise by introducing a bijective and continuous linear operator acting on white noise functionals. Moreover, we study a relationship between exotic Laplacians, acting on higher-order singular functionals, each other in terms of the constructed operator.


1987 ◽  
Vol 29 (2) ◽  
pp. 271-273 ◽  
Author(s):  
J. R. Holub

Talagrand has shown [4, p. 76] that there exists a continuous linear operator from L1[0, 1] to c0 which is not a Dunford-Pettis operator. In contrast to this result, Gretsky and Ostroy [2] have recently proved that every positive operator from L[0, 1] to c0 is a Dunford-Pettis operator, hence that every regular operator between these spaces (i.e. a difference of positive operators) is Dunford-Pettis.


1968 ◽  
Vol 20 ◽  
pp. 1387-1390
Author(s):  
Ludvik Janos

Let X be a topological space and ϕ: X ⟶ X a continuous self-mapping of X. We say that ϕ is linearized in L by Φ if there exists a topological embedding μ: X ⟶ L of the space X into the linear topological vector space L such that for all x ϵ X, μ (ϕ (x)) = Φ (μ (x)), where ϕ is a continuous linear operator on L.


2016 ◽  
Vol 5 ◽  
pp. 65-73
Author(s):  
Sunarsini ◽  
Sadjidon ◽  
Agus Nur Ahmad Syarifudin

2001 ◽  
Vol 14 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Anwar A. Al-Nayef

The spectrum σ(A) of a continuous linear operator A:E→E defined on a Banach space E, which is contracting with respect to the Hausdorff measure of noncompactness, is investigated.


2002 ◽  
Vol 66 (3) ◽  
pp. 425-441 ◽  
Author(s):  
Christoph Schmoeger

A continuous linear operator on a complex Banach space is said to be paranormal if ‖Tx‖2 ≤ ‖T2x‖ ‖x‖ for all x ∈ X. T is called totally paranormal if T–λ is paranormal for every λ ∈ C. In this paper we investigate the class of totally paranormal operators. We shall see that Weyl's theorem holds for operators in this class. We also show that for totally paranormal operators the Weyl spectrum satisfies the spectral mapping theorem. In Section 5 of this paper we investigate the operator equations eT = eS and eTeS = eSeT for totally paranormal operators T and S.


1972 ◽  
Vol 71 (3) ◽  
pp. 495-497 ◽  
Author(s):  
D. J. H. Garling ◽  
A. Wilansky

We recall that a matrix A is said to sum a sequence x if Axε c, the space of all convergent sequences, and that A is conservative if it sums every convergent sequence. If A is conservative, A defines a continuous linear operator on c. Berg (2), Crawford (3)and Whitley (9) have proved the following theorem:Theorem 1. A conservative matrix sums no bounded divergent sequence if and only if,considered as an operator on c, it is range closed and has finite-dimensional null-spac


Sign in / Sign up

Export Citation Format

Share Document