scholarly journals Differentials in certain classes of graphs

2010 ◽  
Vol 41 (2) ◽  
pp. 129-138 ◽  
Author(s):  
P. Roushini Leely Pushpam ◽  
D. Yokesh

Let $X subset V$ be a set of vertices in a graph $G = (V, E)$. The boundary $B(X)$ of $X$ is defined to be the set of vertices in $V-X$ dominated by vertices in $X$, that is, $B(X) = (V-X) cap N(X)$. The differential $ partial(X)$ of $X$ equals the value $ partial(X) = |B(X)| - |X|$. The differential of a graph $G$ is defined as $ partial(G) = max { partial(X) | X subset V }$. It is easy to see that for any graph $G$ having vertices of maximum degree $ Delta(G)$, $ partial(G) geq Delta (G) -1$. In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs, $k$-regular graphs, for $k leq 4$, and bipartite graphs for which $ partial(G) = Delta(G)-1$. We also determine the value of $ partial(T)$ for any complete binary tree $T$.

10.37236/2319 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Jakub Przybyło ◽  
Mariusz Woźniak

Let $c:E(G)\rightarrow [k]$ be  a colouring, not necessarily proper, of edges of a graph $G$. For a vertex $v\in V$, let $\overline{c}(v)=(a_1,\ldots,a_k)$, where $ a_i =|\{u:uv\in E(G),\;c(uv)=i\}|$, for $i\in [k].$ If we re-order the sequence $\overline{c}(v)$ non-decreasingly, we obtain a sequence $c^*(v)=(d_1,\ldots,d_k)$, called a palette of a vertex $v$. This can be viewed as the most comprehensive information about colours incident with $v$ which can be delivered by a person who is unable to name colours but distinguishes one from another. The smallest $k$ such that $c^*$ is a proper colouring of vertices of $G$ is called the colour-blind index of a graph $G$, and is denoted by dal$(G)$. We conjecture that there is a constant $K$ such that dal$(G)\leq K$ for every graph $G$ for which the parameter is well defined. As our main result we prove that $K\leq 6$ for regular graphs of sufficiently large degree, and for irregular graphs with $\delta (G)$ and $\Delta(G)$ satisfying certain conditions. The proofs are based on the Lopsided Lovász Local Lemma. We also show that $K=3$ for all regular bipartite graphs, and for complete graphs of order $n\geq 8$.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Young Chel Kwun ◽  
Hafiz Mutee ur Rehman ◽  
Muhammad Yousaf ◽  
Waqas Nazeer ◽  
Shin Min Kang

The aim of this report to solve the open problem suggested by Chen et al. We study the graph entropy with ABC edge weights and present bounds of it for connected graphs, regular graphs, complete bipartite graphs, chemical graphs, tree, unicyclic graphs, and star graphs. Moreover, we compute the graph entropy for some families of dendrimers.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Author(s):  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti

The total irregularity index of a graph [Formula: see text] is defined by Abdo et al. [H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 201–206] as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In 2014, You et al. [L. H. You, J. S. Yang and Z. F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Unicyclic graphs) and Zhou et al. [L. H. You, J. S. Yang, Y. X. Zhu and Z. F. You, The maximal total irregularity of bicyclic graphs, J. Appl. Math. 2014 (2014) 785084, http://dx.doi.org/10.1155/2014/785084 ] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Bicyclic graphs). In this paper, we characterize the aforementioned graphs with an alternative but comparatively simple approach. Also, we characterized the graphs having maximum [Formula: see text] value among the classes [Formula: see text] (Tricyclic graphs), [Formula: see text] (Tetracyclic graphs), [Formula: see text] (Pentacyclic graphs) and [Formula: see text] (Hexacyclic graphs).


10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


1991 ◽  
Vol 34 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Peter Arpin ◽  
John Ginsburg

AbstractA partially ordered set P is said to have the n-cutset property if for every element x of P, there is a subset S of P all of whose elements are noncomparable to x, with |S| ≤ n, and such that every maximal chain in P meets {x} ∪ S. It is known that if P has the n-cutset property then P has at most 2n maximal elements. Here we are concerned with the extremal case. We let Max P denote the set of maximal elements of P. We establish the following result. THEOREM: Let n be a positive integer. Suppose P has the n-cutset property and that |Max P| = 2n. Then P contains a complete binary tree T of height n with Max T = Max P and such that C ∩ T is a maximal chain in T for every maximal chain C of P. Two examples are given to show that this result does not extend to the case when n is infinite. However the following is shown. THEOREM: Suppose that P has the ω-cutset property and that |Max P| = 2ω. If P — Max P is countable then P contains a complete binary tree of height ω


Sign in / Sign up

Export Citation Format

Share Document