scholarly journals Vizing's 2-Factor Conjecture Involving Toughness and Maximum Degree Conditions

10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


10.37236/1551 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Niessen

Let $G$ be a simple graph with $3\Delta (G) > |V|$. The Overfull Graph Conjecture states that the chromatic index of $G$ is equal to $\Delta (G)$, if $G$ does not contain an induced overfull subgraph $H$ with $\Delta (H) = \Delta (G)$, and otherwise it is equal to $\Delta (G) +1$. We present an algorithm that determines these subgraphs in $O(n^{5/3}m)$ time, in general, and in $O(n^3)$ time, if $G$ is regular. Moreover, it is shown that $G$ can have at most three of these subgraphs. If $2\Delta (G) \geq |V|$, then $G$ contains at most one of these subgraphs, and our former algorithm for this situation is improved to run in linear time.



1997 ◽  
Vol 6 (3) ◽  
pp. 295-313 ◽  
Author(s):  
ROLAND HÄGGKVIST ◽  
JEANNETTE JANSSEN

In this paper we show that the list chromatic index of the complete graph Kn is at most n. This proves the list-chromatic conjecture for complete graphs of odd order. We also prove the asymptotic result that for a simple graph with maximum degree d the list chromatic index exceeds d by at most [Oscr ](d2/3√log d).



10.37236/6042 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Henning Bruhn ◽  
Laura Gellert ◽  
Richard Lang

We conjecture that any graph $G$ with treewidth $k$ and maximum degree $\Delta(G)\geq k + \sqrt{k}$ satisfies $\chi'(G)=\Delta(G)$. In support of the conjecture we prove its fractional version. We also show that any graph $G$ with treewidth $k\geq 4$ and maximum degree $2k-1$ satisfies $\chi'(G)=\Delta(G)$, extending an old result of Vizing.



10.37236/7451 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Ralph Keusch

We study the two-player game where Maker and Breaker alternately color the edges of a given graph $G$ with $k$ colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index $\chi'_g(G)$ denotes the smallest $k$ for which Maker has a winning strategy.The trivial bounds $\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1$ hold for every graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Beveridge, Bohman, Frieze, and Pikhurko conjectured that there exists a constant $c>0$ such that for any graph $G$ it holds $\chi'_g(G) \le (2-c)\Delta(G)$ [Theoretical Computer Science 2008], and verified the statement for all $\delta>0$ and all graphs with $\Delta(G) \ge (\frac12+\delta)|V(G)|$. In this paper, we show that $\chi'_g(G) \le (2-c)\Delta(G)$ is true for all graphs $G$ with $\Delta(G) \ge C \log |V(G)|$. In addition, we consider a biased version of the game where Breaker is allowed to color $b$ edges per turn and give bounds on the number of colors needed for Maker to win this biased game.



10.37236/2101 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Mikio Kano ◽  
Saieed Akbari ◽  
Maryam Ghanbari ◽  
Mohammad Javad Nikmehr

Let $G$ be a graph. The core of $G$, denoted by $G_{\Delta}$, is the subgraph of $G$ induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of $G$. A $k$-edge coloring of $G$ is a function $f:E(G)\rightarrow L$ such that $|L| = k$ and $f(e_1)\neq f(e_2)$ for all two adjacent edges  $e_1$ and $e_2$ of $G$. The chromatic index of $G$, denoted by $\chi'(G)$, is the minimum number $k$ for which $G$ has a $k$-edge coloring.  A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. In this paper it is shown that every connected graph $G$ of even order and with $\Delta(G_{\Delta})\leq 2$ is Class $1$ if $|G_{\Delta}|\leq 9$ or $G_{\Delta}$ is a cycle of order $10$.



10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.



1972 ◽  
Vol 24 (5) ◽  
pp. 805-807 ◽  
Author(s):  
Hudson V. Kronk ◽  
John Mitchem

It is easy to verify that any connected graph G with maximum degree s has chromatic number χ(G) ≦ 1 + s. In [1], R. L. Brooks proved that χ(G) ≦ s, unless s = 2 and G is an odd cycle or s > 2 and G is the complete graph Ks+1. This was the first significant theorem connecting the structure of a graph with its chromatic number. For s ≦ 4, Brooks' theorem says that every connected s-chromatic graph other than Ks contains a vertex of degree > s — 1. An equivalent formulation can be given in terms of s-critical graphs. A graph G is said to be s-critical if χ(G) = s, but every proper subgraph has chromatic number less than s. Each scritical graph has minimum degree ≦ s — 1. We can now restate Brooks' theorem: if an s-critical graph, s ≦ 4, is not Ks and has p vertices and q edges, then 2q ≦ (s — l)p + 1. Dirac [2] significantly generalized the theorem of Brooks by showing that 2q ≦ (s — 1)£ + s — 3 and that this result is best possible.



10.37236/9 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
A. Aflaki ◽  
S. Akbari ◽  
K.J. Edwards ◽  
D.S. Eskandani ◽  
M. Jamaali ◽  
...  

Let $G$ be a simple graph and $\Delta(G)$ denote the maximum degree of $G$. A harmonious colouring of $G$ is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number $h(G)$ is the least number of colours in such a colouring. In this paper it is shown that if $T$ is a tree of order $n$ and $\Delta(T)\geq\frac{n}{2}$, then there exists a harmonious colouring of $T$ with $\Delta(T)+1$ colours such that every colour is used at most twice. Thus $h(T)=\Delta(T)+1$. Moreover, we prove that if $T$ is a tree of order $n$ and $\Delta(T) \le \Big\lceil\frac{n}{2}\Big\rceil$, then there exists a harmonious colouring of $T$ with $\Big\lceil \frac{n}{2}\Big \rceil +1$ colours such that every colour is used at most twice. Thus $h(T)\leq \Big\lceil \frac{n}{2} \Big\rceil +1$.



10.37236/266 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Tom Rackham

Let $G$ be a simple graph of maximum degree $\Delta \geq 3$, not containing $K_{\Delta + 1}$, and ${\cal L}$ a list assignment to $V(G)$ such that $|{\cal L}(v)| = \Delta$ for all $v \in V(G)$. Given a set $P \subset V(G)$ of pairwise distance at least $d$ then Albertson, Kostochka and West (2004) and Axenovich (2003) have shown that every ${\cal L}$-precolouring of $P$ extends to a ${\cal L}$-colouring of $G$ provided $d \geq 8$. Let $K_{\Delta + 1}^-$ denote the graph $K_{\Delta + 1}$ with one edge removed. In this paper, we consider the problem above and the effect on the pairwise distance required when we additionally forbid either $K_{\Delta + 1}^-$ or $K_{\Delta}$ as a subgraph of $G$. We have the corollary that an extra assumption of 3-edge-connectivity in the above result is sufficient to reduce this distance from $8$ to $4$. This bound is sharp with respect to both the connectivity and distance. In particular, this corrects the results of Voigt (2007, 2008) for which counterexamples are given.



10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.



Sign in / Sign up

Export Citation Format

Share Document