scholarly journals Influence of nitrogen supply on spring barley productivity and nitrate reductase activity

2013 ◽  
Vol 35 (2) ◽  
pp. 191-203
Author(s):  
U. Wojcieska ◽  
E. Wolska ◽  
M. Król

The aim of the present study was to obtain some informations on the productivity of four chosen barley varieties growing at low and high nitrogen level. Some parameters of the yield structure and nitrate reductase activity were taken into consideration. It was found that there exist some differences in the yield between the compared varieties and some differences in their reaction to a high N level in the soil. The grain yield increase of the plants treated with high nitrogen doses was above all the result of the increase in dry matter of the lateral shoots and in leaf area. Distinct increase in the number of grains per ear and 1000-grains weight was also observed. The amount of reduced nitrogen collected during the growth season depended, in part, on the nitrate reductase activity and in part on the amount of the enzyme present in the plant. A rise of the nitrogen level caused an increase in nitrate reductase activity, in all varieties. The different influence of nitrogen on the growth of green organs in the compared varieties caused differences in the amount of the enzyme present in the plants and in protein yields.

Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 169-173 ◽  
Author(s):  
L. E. Schrader ◽  
D. M. Peterson ◽  
E. R. Leng ◽  
R. H. Hageman

Crop Science ◽  
1982 ◽  
Vol 22 (1) ◽  
pp. 85-88 ◽  
Author(s):  
E. L. Deckard ◽  
N. D. Williams ◽  
J. J. Hammond ◽  
L. R. Joppa

Author(s):  
Xudong Zhang ◽  
Bastian L. Franzisky ◽  
Lars Eigner ◽  
Christoph‐Martin Geilfus ◽  
Christian Zörb

AbstractChloride (Cl−) is required for photosynthesis and regulates osmotic balance. However, excess Cl− application negatively interacts with nitrate ($${\mathrm{NO}}_{3}^{-}$$ NO 3 - ) uptake, although its effect on $${\mathrm{NO}}_{3}^{-}$$ NO 3 - metabolism remains unclear. The aim was to test whether Cl− stress disturbs nitrate reductase activity (NRA). A maize variety (Zea mays L. cv. LG 30215) was hydroponically cultured in a greenhouse under the following conditions: control (2 mM CaCl2), moderate Cl− (10 mM CaCl2), high Cl− (60 mM CaCl2). To substantiate the effect of Cl− stress further, an osmotic stress with lower intensity was induced by 60 g polyethylene glycol (PEG) 6000 L−1 + 2 mM CaCl2), which was 57% of the osmotic pressure being produced by 60 mM CaCl2. Results show that high Cl− and PEG-induced osmotic stress significantly reduced shoot biomass, stomatal conductance and transpiration rate, but NRA was only decreased by high Cl− stress. The interference of NRA in chloride-stressed maize is supposed to be primarily caused by the antagonistic uptake of Cl− and $${\mathrm{NO}}_{3}^{-}$$ NO 3 - .


2017 ◽  
Vol 199 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Silvana Gomes dos Santos ◽  
Flaviane da Silva Ribeiro ◽  
Camila Sousa da Fonseca ◽  
Willian Pereira ◽  
Leandro Azevedo Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document