scholarly journals Disturbances in the development of the female gametophyte in fully fertile tomatoes (Lycopersicon esculentum L. Mill) and those showing a tendency to parthenocarpy

2014 ◽  
Vol 52 (2) ◽  
pp. 115-120
Author(s):  
Barbara Gabara ◽  
Bogusław Kubicki

It was found that part of the ovules in two lines of <em>Lycopersicon esculentum</em>: Kholodostoykye (Kh, fertile) and A33 (with a tendency to parthenocarpy) show disturbances in the development of the embryo sac. These irregularities can be seen in four phases: pre-meiotic, post-meiotic (tetrad), nucleate and cellular. The majority of irregularities were observed in the cellular stage of embryo sac development. The total number of ovules with disturbed female gametophyte was higher in the A33 (32.6%) than in the Kh line (23.5%).

Biologia ◽  
2008 ◽  
Vol 63 (1) ◽  
Author(s):  
Nuran Ekici ◽  
Feruzan Dane

AbstractIn this study, gynoeceum, development of megasporangium, megasporogenesis, megagametogenesis and female gametophyte of Leucojum aestivum were examined cytologically and histologically. Ovules of L. aestivum are of anatropous, bitegmic and crassinucellate type. Inner integument forms the micropyle. Archesporial cell develops directly into a megasporocyte. Embryo sac development is of bisporic Allium type. Filiform apparatus is observed in synergids. Polar nuclei fuse before fertilization to form secondary nucleus near the antipodals.


Phytotaxa ◽  
2018 ◽  
Vol 350 (3) ◽  
pp. 235
Author(s):  
YUAN-YUAN SONG ◽  
YUN-YUN ZHAO ◽  
JIA-XI LIU

In this study, we systematically studied the microsporogenesis, megasporogenesis, as well as development of male and female gametophyte of Polygonatum macropodum and P. sibiricum using the conventional paraffin sectioning technique. Our results showed that 1) microsporocytes cytokinesis is of the successive type; 2) microspore tetrads are tetragonal or tetrahedral; 3) mature pollen grains are two-celled or three-celled; 4) ovary is superior and trilocular, with axile placentas bearing 4–6 anatropous per locule; 5) ovules are anatropous, crassinucellate and bitegmic, with micropyle formed by the inner integument; 6) megaspore tetrads are linear or T-shaped; 7) embryo sac development is typically of Polygonum-type. The embryological features of Polygonatum support its inclusion of Asparagaceae in Asparagales.


Caryologia ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 91-97
Author(s):  
Ciler Kartal ◽  
Nuran Ekici ◽  
Almina Kargacıoğlu ◽  
Hazal Nurcan Ağırman

In this study gynoecium, megasporogenesis, megagametogenesis and female gametophyte of Gladiolus italicus Miller were examined cytologically and histologically by using light microscopy techniques. Ovules of G. italicus are of anatropous, bitegmic and crassinucellate type. Embryo sac development is of monosporic Polygonum type. Polar nuclei fuse before fertilization to form a secondary nucleus near the antipodals. The female gametophyte development of G. italicus was investigated for the first time with this study.


2020 ◽  
Vol 71 (22) ◽  
pp. 7059-7072 ◽  
Author(s):  
Maria Dolores Gomez ◽  
Daniela Barro-Trastoy ◽  
Clara Fuster-Almunia ◽  
Pablo Tornero ◽  
Jose M Alonso ◽  
...  

Abstract Ovule development is essential for plant survival, as it allows correct embryo and seed development upon fertilization. The female gametophyte is formed in the central area of the nucellus during ovule development, in a complex developmental programme that involves key regulatory genes and the plant hormones auxins and brassinosteroids. Here we provide novel evidence of the role of gibberellins (GAs) in the control of megagametogenesis and embryo sac development, via the GA-dependent degradation of RGA-LIKE1 (RGL1) in the ovule primordia. YPet-rgl1Δ17 plants, which express a dominant version of RGL1, showed reduced fertility, mainly due to altered embryo sac formation that varied from partial to total ablation. YPet-rgl1Δ17 ovules followed normal development of the megaspore mother cell, meiosis, and formation of the functional megaspore, but YPet-rgl1Δ17 plants had impaired mitotic divisions of the functional megaspore. This phenotype is RGL1-specific, as it is not observed in any other dominant mutants of the DELLA proteins. Expression analysis of YPet-rgl1Δ17 coupled to in situ localization of bioactive GAs in ovule primordia led us to propose a mechanism of GA-mediated RGL1 degradation that allows proper embryo sac development. Taken together, our data unravel a novel specific role of GAs in the control of female gametophyte development.


2014 ◽  
Vol 54 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Barbara Gabara ◽  
Bogusław Kubicki

Comparative studies on the development of the female gametophyte, pollination and fertilization in two lines of <em>Lycopersicon esculentum</em>, Kholodostoykye (Kh, fertile) and A33 (with a tendency to parthenocarpy) have revealed that seed production is affected by disturbances in embryo sac formation but mainly by its degeneration after anthesis, which is especially visible in line A33. Moreover, delayed development of some embryo sacs and incomplete pollination due to various stigma levels seem to be responsible for the diminution of seed number in line A33. Deep fluorescence of numerous pollen grains as well as whole pollen tubes in 83.3 per cent of A33 stigmas and only 24.1 per cent in the Kh line points to the heterogeneity of pollen. This could be one more reason for reduced fertility. The results of application of plant growth regulators (auxin, PCIB) which affect seed production in tomato of line A33 remain inconclusive.


1961 ◽  
Vol 39 (5) ◽  
pp. 1001-1006 ◽  
Author(s):  
Govindappa D. Arekal

The mode of embryo sac development in Hoppea dichotoma Willd. conforms to the Polygonum type. No integumentary tapetum is organized around the female gametophyte. The organization of the endosperm follows the nuclear type. Simultaneous cell wall formation occurs throughout the endosperm when the embryo is at the 4- to 6-celled stage. The development of the embryo is assigned to the second period, V megarchetype and group 11 in series C′ in the system of embryogenic classification of Souèges. The endosperm and embryo of Gentianaceae are compared with those of Menyanthaceae.


2012 ◽  
Vol 30 (2) ◽  
pp. 188 ◽  
Author(s):  
Dong-Mei LI ◽  
Cheng-Hou WU ◽  
Xiu-Lin YE ◽  
Cheng-Ye LIANG

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 1009-1020 ◽  
Author(s):  
William F Sheridan ◽  
Nadezhda A Avalkina ◽  
Ivan I Shamrov ◽  
Tatyana B Batyea ◽  
Inna N Golubovskaya

Abstract The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (macl) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In macl mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.


1994 ◽  
Vol 91 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Francisco R. Tadeo ◽  
Manuel Talon ◽  
Eric Germain ◽  
Francoise Dosba

Sign in / Sign up

Export Citation Format

Share Document