INFLUENCE OF NANOSILICAS AND GRAPHENE OXIDE ON STRUCTURAL PROPERTIES OF FILTER CAKE LAYER OF WATER BASED DRILLING FLUID

Author(s):  
Aleksandra Jamrozik
Author(s):  
Y. Rugang ◽  
◽  
P. Chunyao ◽  
Z. Zhenhua ◽  
J. Dongxu ◽  
...  

2014 ◽  
Vol 262 ◽  
pp. 51-61 ◽  
Author(s):  
Rugang Yao ◽  
Guancheng Jiang ◽  
Wei Li ◽  
Tianqing Deng ◽  
Hongxia Zhang

2021 ◽  
Vol 5 (2) ◽  
pp. 1-14
Author(s):  
Mahmoud O

The increasing demand for deeper drilling and more complicated wells fastens the way for improved drilling fluid (mud) technologies and promising additives. Several studies have shown numerous improvements in mud characteristics upon using ilmenite compared to the commonly used weighting materials. This study aims at investigating the removal of filter cake deposited by ilmenite water-based drilling fluid under harsh conditions using low-concentration (7.5 wt%) of hydrochloric acid (HCl) and chelating agent (HEDTA) to prevent iron precipitation during reaction. API filter press was used to conduct the filtration tests and generate the filter cake at a pressure ~ 300 psi and temperature ~ 250°F. Different sandstone cores of 2.5-in. diameter and 1-in. thickness were used to simulate the formation during filtration. Filtrate fluids were collected for 30 minutes as per API procedures and computerized tomography (CT) scan was used to characterize the cores with the deposited filter cakes. The filter cakes were soaked with HCl–chelate solution for six hours. Cores with the remaining filter cakes were CT scanned again. Effluent solutions resulting from the aforementioned soaking process were analyzed using inductively coupled plasma (ICP). Scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) was used to analyze the dried filter cakes and remaining residue. CT scan and SEM-EDS showed two layers of the filter cake with different densities but similar elemental composition. Using 7.5 wt% of HCl can partially remove the filter cake generated by ilmenite water-based drilling fluids. Adding the chelate showed minimal impact on the filter cake removal-efficiency; however, it helped nullify the corrosion issues during the treatment. This study provides a step forward on the way to chemically remove ilmenite-based filter cake using low acid concentration and virtually overcome corrosion issues encountered while acidizing.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Jimoh K. Adewole ◽  
Musa O. Najimu

This study investigates the effect of using date seed-based additive on the performance of water-based drilling fluids (WBDFs). Specifically, the effects of date pit (DP) fat content, particle size, and DP loading on the drilling fluids density, rheological properties, filtration properties, and thermal stability were investigated. The results showed that dispersion of particles less than 75 μm DP into the WBDFs enhanced the rheological as well as fluid loss control properties. Optimum fluid loss and filter cake thickness can be achieved by addition of 15–20 wt % DP loading to drilling fluid formulation.


Author(s):  
Petar Mijić ◽  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić

About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids. This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.


Sign in / Sign up

Export Citation Format

Share Document