Petroleum & Petrochemical Engineering Journal
Latest Publications


TOTAL DOCUMENTS

179
(FIVE YEARS 99)

H-INDEX

1
(FIVE YEARS 1)

Published By Medwin Publishers

2578-4846

2021 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
Abimbola FA

Simultaneous ignition of an entire exposed surface required for accurate modeling of solid propellant fracturing process is difficult to achieve because wellbore fluids decrease flame spread rate and negatively impact burn propagation, and can extinguish portions of the burning propellant grain thereby resulting in slower pressure loading rates and insufficient energy for producing long fractures. A proposed system is that in which the propellant is protected from wellbore fluids by housing it in a vessel with a means for creating openings to allow combustion gases produced to flow into the wellbore. On this basis, a model was developed using mass and energy conservation laws, and applying a concept of choked flow in the openings to relate conditions in the wellbore to the vessel. The results of the peak pressure and pressure rise time obtained from the model for multiple-fracture regime agree well with the reported experimental results and thus establishing the validity of the model in predicting the wellbore pressure during solid propellant fracturing system. A star-shape burning surface is proposed for the propellant and calculations carried out proves it to be more effective as it provides more energy for producing long fractures essential for more flow of oil and gas from the reservoir into the wellbore than a conventional circular surface of the same burning area. The exterior angle of star-shape burning surface was found to be a function of the number of vertices of the star and it determines the progressive burning nature of the propellant.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
Shabibi M

Excess water production is one of the limiting factors in oil recycling, which reduces production efficiency and leaves a lot of costs. In this paper, water control methods were investigated in order to find the best way to control excess water production. For this propos first, a real model was made using the history match of one of Iran's oil fields that produced excess water because of canalization and different simulation scenarios for gel treatment have been investigated. In the study of more scenarios, comparing the water production in the early times and later injecting the gel, the percentage of water production for injection in the early times has been further reduced. When the gel is injected for a fixed period of 6 months in the production and injection wells The best results for lowering the rate of production water are obtained when the gel is injected simultaneously into the injection and production well, which reduces the water production rate by 12,000 barrels, and the best oil production efficiency for when simultaneous injection is performed in the production and injection well. The best treatment method is injection of high concentration gel in the early stages of water production and it's better to inject gel in deeper wells.


2021 ◽  
Vol 5 (2) ◽  
pp. 1-4
Author(s):  
Nielsen P

With 49% of the world’s GDP under net zero goals, the global community is changing in how it treats emissions and carbon releases, with shareholders, stakeholders and investors demanding transparency on current performance and strategies to reduce or offset emissions. High frequency, reliable data empowers an organisation to strategically optimise and track emissions to reach committed goals from the asset level to the board room and across direct, indirect and supply chain sources (Scope 1, 2 and 3). A carbon footprinting solution, which provides a holistic view of total greenhouse gas emissions, requires a combination of carbon accounting, control system integration, emissions monitoring and greenhouse gas reporting software, to deliver an automated, reliable and verifiable real-time emissions/carbon reporting solution. This solution is also critical in providing managed data which can be utilised in the carbon economy and when combined with a Blockchain platform, results in a holistic data transfer chain for emissions reporting which is secure, transparent and trusted throughout industry and government. The role of comprehensive, connected environmental monitoring will be explored in the role of effective emissions offset and carbon trading economies with Blockchain supported technologies being presented as an enabling aspect of the overall solution. Smart contracts embedded within a Blockchain solution could automate trading mechanisms however require quality emissions monitoring data as a foundation for successful implementation. The role of quality emissions monitoring and governance in this process will be presented together with implications for industry and government for the carbon economy.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-6
Author(s):  
Bazvand M

Due to the growing demand for energy as well as the depletion of shallow land reservoirs, it sounds more important to utilize deep sea reservoirs. Due to their special conditions, drilling and production of these reservoirs face more problems. The science that helps us avoiding problems during operation is called flow assurance. One of the important issues in flow assurance is to prevent formation of gas hydrates. One of gas hydrates preventing methods is to use of inhibitors. Using of inhibitors is a cost- effective and eco-friendly method; so, it is used more nowadays. This paper introduces a new hydrate inhibitor that has been developed from the modification of one of the most widely used inhibitors present in the industry, Poly Vinyl Pyrrolidone, to improve its efficiency. The main structure of the paper is about what is the gas hydrate and its prevention methods. Finally, compare different inhibitors with new one. The results show that hydrate formation time for all polymers is approximately the same, while a half of new inhibitor in compare with amount of others inhibitors causes the same results. This matter shows a double efficiency, and this means a saving of double Polymer consumption.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-6
Author(s):  
Miadonye A

Low salinity water flooding has for decades emerged as a technically and economically viable enhanced oil recovery scheme due to its environmentally attractive nature. In the literature, several reasons have been proposed for its immense success, some of which have been experimentally proven. Among the reasons given, wettability and pH increase have been greatly highlighted. In this paper, we have developed a pH and salinity dependent Gibbs free energy of adsorption model, using established thermodynamic concepts to prove the viability of hydrogen ions adsorption which can lead to pH and wettability increase. Accordingly, we have shown based on theoretical calculations that as salinity decreases, adsorption free energy for hydrogen ions decreases, leading to pH decrease at lower salinities. Our theoretical calculations also agree with optimum salinity ranges reported in the literature.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-24
Author(s):  
El-hoshoudy AN

Chemical flooding is one of the major EOR techniques particularly for reservoirs where thermal methods are not applicable, that chemical flooding may be polymer flooding, alkaline flooding, surfactant flooding, or a combination of them. The application of designing a chemical flooding program is strongly affected by the current economics, reservoir oil type, and crude oil price. In this project, mechanisms of different chemical methods will be discussed, and design chemical flooding program by using a laboratory scale and programming method, this project is mainly about making a design of surfactant flooding program, that to make a good program, choosing the optimum surfactant concentration is very important, also economic study is very important in designing the program to know if the project is profitable or not to identify its efficiency, and choosing the better type of surfactant for the reservoir is very important to increase the hydrocarbon recovery, results of this project proved that the surfactant has goof effect on wettability of rock that it increases the rock wettability to water and that increase the hydrocarbon recovery.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Ibrahim AY

A refinery plant in the middle east started its official production in 2020. All the refinery plant acidic gas is fed to the Sulphur recovery unit plant to produce sulphur and prevent any acidic emissions against environmental regulations. The Sulphur recovery unit was simulated via special package named SULSIM. The results were validated, then the simulation was used in case studies to understand some important parameters of Sulphur recovery plants. The effect of decreasing the combustion air inlet temperature, the effect of decreasing the Claus reactor 1 inlet temperature and the effect of decreasing the thermal reactor feed were studied. Decreasing combustion air outlet temperature on the thermal reactor decreases the thermal reactor burning temperature, increases the concentration of COS and CS 2 by-products. Decreasing Catalytic reactor 1 inlet temperature decreases the hydrolysis reactions of COS and CS 2 but increases the Sulphur conversion efficiency. Decreasing AAG feed to the thermal reactor decreases the waste heat boiler duty.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Contreras A

This work analyzed physicochemical properties of different types of soils on the generalized and localized corrosion rate in two steels (X52 and X60) most used in pipeline transportation of hydrocarbons. The physicochemical properties such moisture content, pH, resistivity and redox potential, which influence the corrosion rate of the pipelines were analyzed. Soils from three different sites in the south of México were obtained. Soils were sampled approximately 1.5 m deep, close to pipeline. From the analysis of generalized corrosion results taking into account the type of soil, it was observed that the most corrosive soil for the two steels was soil-3, generating corrosion rates of 0.119 and 0.097 mm/year, for the X52 and X60 steels respectively, after a period of 6 months. It is important to note that the maximum generalized corrosion rate was obtained after 1 month of exposure of the steels, generating corrosion rates of 0.177 and 0.162 mm/year, for the X52 and X60 steels respectively. In similar way, the localized corrosion rates for the both steels were higher when steels are exposed to Soil-3, generating corrosion rates of 1.1 and 0.45 mm/year, for X52 and X60 steel respectively, after a period of 6 months. In general it was observed that X60 steel presents greater resistance to pitting corrosion rate (in Soil-3), which can be attributed to its more homogeneous microstructure, fine grain size, and its chemical composition that presents elements such as Cr and Ni in greater quantity than X52 steel, which improve the corrosion resistance. However, depending on the type of soil the corrosion resistance behavior of each steel is different. From the analysis of various equations fits, it was determined that the potential equation is the one that gives the best fit for all cases.


2021 ◽  
Vol 5 (2) ◽  
pp. 1-14
Author(s):  
Mahmoud O

The increasing demand for deeper drilling and more complicated wells fastens the way for improved drilling fluid (mud) technologies and promising additives. Several studies have shown numerous improvements in mud characteristics upon using ilmenite compared to the commonly used weighting materials. This study aims at investigating the removal of filter cake deposited by ilmenite water-based drilling fluid under harsh conditions using low-concentration (7.5 wt%) of hydrochloric acid (HCl) and chelating agent (HEDTA) to prevent iron precipitation during reaction. API filter press was used to conduct the filtration tests and generate the filter cake at a pressure ~ 300 psi and temperature ~ 250°F. Different sandstone cores of 2.5-in. diameter and 1-in. thickness were used to simulate the formation during filtration. Filtrate fluids were collected for 30 minutes as per API procedures and computerized tomography (CT) scan was used to characterize the cores with the deposited filter cakes. The filter cakes were soaked with HCl–chelate solution for six hours. Cores with the remaining filter cakes were CT scanned again. Effluent solutions resulting from the aforementioned soaking process were analyzed using inductively coupled plasma (ICP). Scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) was used to analyze the dried filter cakes and remaining residue. CT scan and SEM-EDS showed two layers of the filter cake with different densities but similar elemental composition. Using 7.5 wt% of HCl can partially remove the filter cake generated by ilmenite water-based drilling fluids. Adding the chelate showed minimal impact on the filter cake removal-efficiency; however, it helped nullify the corrosion issues during the treatment. This study provides a step forward on the way to chemically remove ilmenite-based filter cake using low acid concentration and virtually overcome corrosion issues encountered while acidizing.


Sign in / Sign up

Export Citation Format

Share Document